Skip to main content

Advertisement

Log in

Glomerular expression of connexin 40 and connexin 43 in rat experimental glomerulonephritis

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Gap junctional intercellular communication is thought to play an important role in the maintenance of cell differentiation and homeostasis. Gap junctions connect glomerular mesangial cells to each other. In this study, we examined the glomerular expression of connexins (Cxs) 40 and 43 at both the protein and transcript levels in anti-Thy1.1 glomerulonephritis (GN).

Methods

Anti-Thy1.1 GN was induced by intravenous injection of anti-Thy1.1 monoclonal antibody 1-22-3. Cx protein expression was examined by immunofluorescence, immunoelectron microscopy, and Western blotting. Changes in mRNA levels were detected by real-time reverse transcriptase–polymerase chain reaction.

Results

Cx40 was detected in mesangial cells in normal rat glomeruli; its expression was reduced on days 3 and 7 and recovered to normal on day 14 following GN induction. Cx43 was detected in mesangial cells and podocytes in normal rat glomeruli, and its expression did not change during the disease course of GN. Expression of Cx40 and Cx43 was also detected in extraglomerular mesangial cells; this expression did not change during the disease course. Opposing patterns of expression between Cx40 and smooth muscle actin (SMA) were observed with double-immunofluorescence labeling. SMA is a differentiation marker of mesangial cells; it is often expressed during proliferation but not under physiological conditions.

Conclusion

These results suggest that Cx40 expression in mesangial cells is related to mesangial cell regeneration. Thus, Cx expression regulation could be a therapeutic target for glomerular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Severs NJ, Rothery S, Dupont E, Coppen SR, Yeh HI, Ko YS, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech. 2001;52:301–22.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84:381–8.

    Article  PubMed  CAS  Google Scholar 

  3. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996;65:475–502.

    Article  PubMed  CAS  Google Scholar 

  4. Christ GJ, Spray DC, El-Sabban M, Moore LK, Brink PR. Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ Res. 1996;79:631–46.

    Article  PubMed  CAS  Google Scholar 

  5. Chaytor AT, Taylor HJ, Griffith TM. Gap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation. Am J Physiol Heart Circ Physiol. 2002;282:H1548–55.

    PubMed  CAS  Google Scholar 

  6. De Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, et al. Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res. 2000;86:649–55.

    Article  PubMed  Google Scholar 

  7. Christ GJ, Brink PR, Zhao W, Moss J, Gondre CM, Roy C, et al. Gap junctions modulate tissue contractility and alpha 1 adrenergic agonist efficacy in isolated rat aorta. J Pharmacol Exp Ther. 1993;266:1054–65.

    PubMed  CAS  Google Scholar 

  8. Segal SS, Duling BR. Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling? Am J Physiol. 1989;256:H838–45.

    PubMed  CAS  Google Scholar 

  9. Brisset AC, Isakson B, Kwak BR. Connexins in vascular physiology and pathology. Antioxid Redox Signal. 2009;11:267–82.

    Article  PubMed  CAS  Google Scholar 

  10. Haefliger JA, Castillo E, Waeber G, Bergonzelli GE, Aubert JF, Sutter E, et al. Hypertension increases connexin43 in a tissue-specific manner. Circulation. 1997;95:1007–14.

    Article  PubMed  CAS  Google Scholar 

  11. Haefliger JA, Meda P, Formenton A, Wiesel P, Zanchi A, Brunner HR, et al. Aortic connexin43 is decreased during hypertension induced by inhibition of nitric oxide synthase. Arterioscler Thromb Vasc Biol. 1999;19:1615–22.

    Article  PubMed  CAS  Google Scholar 

  12. Watts S, Webb RC. Vascular gap junctional communication is increased in mineralcorticoid-salt hypertension. Hypertension. 1996;28:888–93.

    Article  PubMed  CAS  Google Scholar 

  13. Yaoita E, Yao J, Yoshida Y, Morioka T, Nameta M, Takata T, et al. Up-regulation of connexin43 in glomerular podocytes in response to injury. Am J Pathol. 2002;161:1597–606.

    Article  PubMed  CAS  Google Scholar 

  14. Yao J, Morioka T, Oite T. PDGF regulates gap junction communication and connexin43 phosphorylation by pi 3-kinase in mesangial cells. Kidney Int. 2000;57:1915–26.

    Article  PubMed  CAS  Google Scholar 

  15. Goligorsky MS, Iijima K, Krivenko Y, Tsukahara H, Hu Y, Moore LC. Role of mesangial cells in macula densa to afferent arteriole information transfer. Clin Exp Pharmacol Physiol. 1997;24:527–31.

    Article  PubMed  CAS  Google Scholar 

  16. Iijima K, Moore L, Goligorsky M. Syncytial organization of cultured rat mesangial cells. Am J Physiol. 1991;260:F848–55.

    PubMed  CAS  Google Scholar 

  17. Pricam C, Humbert F, Perrelet A, Orci L. Gap junctions in mesangial and lacis cells. J Cell Biol. 1974;63:349–54.

    Article  PubMed  CAS  Google Scholar 

  18. Takenaka T, Inoue T, Kanno Y, Okada H, Meaney KR, Hill CE, et al. Expression and role of connexins in the rat renal vasculature. Kidney Int. 2008;73:415–22.

    Article  PubMed  CAS  Google Scholar 

  19. Takenaka T, Inoue T, Kanno Y, Okada H, Hill CE, Suzuki H. Connexins 37 and 40 transduce purinergic signals mediating renal autoregulation. Am J Physiol Regul Integr Comp Physiol. 2008;294:R1–11.

    Article  PubMed  CAS  Google Scholar 

  20. Hanner F, von Maltzahn J, Maxeiner S, Toma I, Sipos A, Kruger O, et al. Connexin45 is expressed in the juxtaglomerular apparatus and is involved in the regulation of renin secretion and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2008;295:R371–80.

    Article  PubMed  CAS  Google Scholar 

  21. Kurtz L, Schweda F, de Wit C, Kriz W, Witzgall R, Warth R, et al. Lack of connexin 40 causes displacement of renin-producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol. 2007;18:1103–11.

    Article  PubMed  CAS  Google Scholar 

  22. Peti-Peterdi J. Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol. 2006;291:F473–80.

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto T, Wilson CB. Quantitative and qualitative studies of antibody-induced mesangial cell damage in the rat. Kidney Int. 1987;32:514–25.

    Article  PubMed  CAS  Google Scholar 

  24. Wada Y, Morioka T, Oyanagi-Tanaka Y, Yao J, Suzuki Y, Gejyo F, et al. Impairment of vascular regeneration proceeds progressive glomerulosclerosis in anti-Thy-1 glomerulonephritis. Kidney Int. 2002;61:432–43.

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Sugisaki Y, Yamanaka N. Recovery of damaged glomerular capillary network with endothelial cell apoptosis in experimental proliferative glomerulonephritis. Nephron. 1998;79:206–14.

    Article  PubMed  CAS  Google Scholar 

  26. Moriota T, Oite T, Kihara I, Yamamoto T, Hara M, Naka A, et al. Culture of isolated glomeruli from normal and nephritic rabbits. Acta Pathol Jpn. 1980;30:917–26.

    Google Scholar 

  27. Morioka T, Yao J, Suzuki Y, Oite T. The characterization of a specific Thy-1 molecular epitope expressed on rat mesangial cells. Kidney Int. 2004;66:2214–23.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang J, Hill CE. Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes. Kidney Int. 2005;68:1171–85.

    Article  PubMed  CAS  Google Scholar 

  29. Haefliger JA, Demotz S, Braissant O, Suter E, Waeber B, Nicod P, et al. Connexins 40 and 43 are differentially regulated within the kidneys of rats with renovascular hypertension. Kidney Int. 2001;60:190–201.

    Article  PubMed  CAS  Google Scholar 

  30. Hwan Seul K, Beyer EC. Heterogeneous localization of connexin40 in the renal vasculature. Microvasc Res. 2000; 59:140–8.

    Google Scholar 

  31. Baker AJ, Mooney A, Hughes J, Lombardi D, Johnson RJ, Savill J. Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest. 1994;94:2105–16.

    Article  PubMed  CAS  Google Scholar 

  32. Roy-Chaudhury P, Wu B, McDonald S, Haites NE, Simpson JG, Power DA. Phenotypic analysis of the glomerular and periglomerular mononuclear cell infiltrates in the Thy1.1 model of glomerulonephritis. Lab Invest. 1995;72:524–31.

    PubMed  CAS  Google Scholar 

  33. Floege J, Burns MW, Alpers CE, Yoshimura A, Pritzl P, Gordon K, et al. Glomerular cell proliferation and PDGF expression precede glomerular sclerosis in the remnant kidney model. Kidney Int. 1992;41:297–309.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson RJ, Iida H, Alpers CE, Majesky MW, Schwartz SM, Pritzl P, et al. Expression of rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J Clin Invest. 1991;87:847–58.

    Article  PubMed  CAS  Google Scholar 

  35. Vinken M, Vanhaecke T, Papeleu P, Snykers S, Henkens T, Rogiers V. Connexins and their channels in cell growth and cell death. Cell Signal. 2006;18:592–600.

    Article  PubMed  CAS  Google Scholar 

  36. Krysko DV, Leybaert L, Vandenabeele P, D’Herde K. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis. 2005;10:459–69.

    Article  PubMed  CAS  Google Scholar 

  37. Stein LS, Boonstra J, Burghardt RC. Reduced cell–cell communication between mitotic and nonmitotic coupled cells. Exp Cell Res. 1992;198:1–7.

    Article  PubMed  CAS  Google Scholar 

  38. Goodall H, Maro B. Major loss of junctional coupling during mitosis in early mouse embryos. J Cell Biol. 1986;102:568–75.

    Article  PubMed  CAS  Google Scholar 

  39. O’Lague P, Dalen H, Rubin H, Tobias C. Electrical coupling: low resistance junctions between mitotic and interphase fibroblasts in tissue culture. Science. 1970;170:464–6.

    Article  PubMed  Google Scholar 

  40. Ruch RJ. The role of gap junctional intercellular communication in neoplasia. Ann Clin Lab Sci. 1994;24:216–31.

    PubMed  CAS  Google Scholar 

  41. Moorby CD, Gherardi E. Expression of a Cx43 deletion mutant in 3T3 A31 fibroblasts prevents PDGF-induced inhibition of cell communication and suppresses cell growth. Exp Cell Res. 1999;249:367–76.

    Article  PubMed  CAS  Google Scholar 

  42. Decrock E, Vinken M, De Vuyst E, Krysko DV, D’Herde K, Vanhaecke T, et al. Connexin-related signaling in cell death: to live or let die? Cell Death Differ. 2009;16:524–36.

    Article  PubMed  CAS  Google Scholar 

  43. Seul KH, Kang KY, Lee KS, Kim SH, Beyer E. Adenoviral delivery of human connexin37 induces endothelial cell death through apoptosis. Biochem Biophys Res Commun. 2004;319:1144–51.

    Article  PubMed  CAS  Google Scholar 

  44. Kawamura K, Okada S, Li B, Suwa M, Yao J, Morioka T, et al. Turbulence of glomerular hemodynamics involved in progressive glomerulosclerosis. Kidney Int. 2006;69:1792–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Yaoita for his helpful discussion. This research was supported by Grants-in-Aid for scientific research (C) (Nos. 17590821, 19590942 to T. Morioka) from the Japan Society for the Promotion of Science (JSPS).

Conflict of interest

All the authors have declared no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Morioka.

About this article

Cite this article

Morioka, T., Okada, S., Nameta, M. et al. Glomerular expression of connexin 40 and connexin 43 in rat experimental glomerulonephritis. Clin Exp Nephrol 17, 191–204 (2013). https://doi.org/10.1007/s10157-012-0687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0687-2

Keywords

Navigation