Skip to main content
Log in

Rapid Increase in Neural Conduction Time in the Adult Human Auditory Brainstem Following Sudden Unilateral Deafness

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Individuals with sudden unilateral deafness offer a unique opportunity to study plasticity of the binaural auditory system in adult humans. Stimulation of the intact ear results in increased activity in the auditory cortex. However, there are no reports of changes at sub-cortical levels in humans. Therefore, the aim of the present study was to investigate changes in sub-cortical activity immediately before and after the onset of surgically induced unilateral deafness in adult humans. Click-evoked auditory brainstem responses (ABRs) to stimulation of the healthy ear were recorded from ten adults during the course of translabyrinthine surgery for the removal of a unilateral acoustic neuroma. This surgical technique always results in abrupt deafferentation of the affected ear. The results revealed a rapid (within minutes) reduction in latency of wave V (mean pre = 6.55 ms; mean post = 6.15 ms; p < 0.001). A latency reduction was also observed for wave III (mean pre = 4.40 ms; mean post = 4.13 ms; p < 0.001). These reductions in response latency are consistent with functional changes including disinhibition or/and more rapid intra-cellular signalling affecting binaurally sensitive neurons in the central auditory system. The results are highly relevant for improved understanding of putative physiological mechanisms underlying perceptual disorders such as tinnitus and hyperacusis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183:519–538

    Article  CAS  PubMed  Google Scholar 

  • Adjamian P, Sereda M, Hall DA (2009) The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res 253:15–31

    Article  PubMed  Google Scholar 

  • Baguley DM (2002) Mechanisms of tinnitus. Br Med Bull 63:195–212

    Article  CAS  PubMed  Google Scholar 

  • Baguley DM, Moffatt DA, Hardy DG (1992) J Laryngol Otol 106:329–331

    Article  CAS  PubMed  Google Scholar 

  • Bilecen D, Seifritz E, Radu EW, Schmid N, Wetzel S, Probst R, Scheffler K (2000) Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 54:765–767

    Article  CAS  PubMed  Google Scholar 

  • Bridger MW, Graham JM (1985) The influence of raised body temperature on auditory evoked brainstem responses. Clin Otolaryngol Allied Sci 10:195–199

    Article  CAS  PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186

    Article  CAS  PubMed  Google Scholar 

  • Burkard RF, Don M (2007) The auditory brainstem response. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory evoked potentials: basic principles and clinical application. Lippincott Williams and Wilkins, Philadephia, pp 229–253

    Google Scholar 

  • Coleman JR, Clerici WJ (1987) Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol 262:215–226

    Article  CAS  PubMed  Google Scholar 

  • Davis A, Rafaie E (2000) Epidemiology of tinnitus. In: Tyler (ed) Tinnitus handbook. Singular, San Diego, pp 1–24

    Google Scholar 

  • Deans JA, Birchall JP, Mendelow AD (1990) Acoustic neuroma and the contralateral ear: recovery of auditory brainstem response abnormalities after surgery. J Laryngol Otol 104:565–569

    Article  CAS  PubMed  Google Scholar 

  • Elberling C, Don M (1984) Quality estimation of averaged auditory brainstem responses. Scand Audiol 13:187–197

    Article  CAS  PubMed  Google Scholar 

  • Fahy C, Nikolopoulos TP, O’Donoghue GM (2002) Acoustic neuroma surgery and tinnitus. Eur Arch Otolaryngol 259:299–301

    Google Scholar 

  • Firszt JB, Ulmer JL, Gaggl W (2006) Differential representation of speech sounds in the human cerebral hemispheres. Anat Rec A: Discov Mol Cell Evol Biol 288:345–357

    Article  Google Scholar 

  • Grabel JC, Zappulla RA, Ryder J, Wang WJ, Malis LI (1991) Brain-stem auditory evoked responses in 56 patients with acoustic neurinoma. J Neurosurg 74:749–753

    Article  CAS  PubMed  Google Scholar 

  • Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104:3361–3370

    Article  PubMed Central  PubMed  Google Scholar 

  • Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833

    Article  PubMed Central  PubMed  Google Scholar 

  • Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden P, Rosen BR, Kiang NY, Fullerton BC, Weisskoff RM (1998) Imaging subcortical auditory activity in humans. Hum Brain Mapp 6:33–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irvine DRF (2010) Plasticity in the auditory pathway. In: Rees A, Palmer AR (eds) The Oxford handbook of auditory science: the auditory brain. Oxford University Press, Oxford, pp 387–415

    Google Scholar 

  • Kaltenbach JA (2011) Tinnitus: models and mechanisms. Hear Res 276:52–60

    Article  PubMed Central  PubMed  Google Scholar 

  • Langers DR, van Dijk P, Backes WH (2005) Lateralization, connectivity and plasticity in the human central auditory system. Neuroimage 28:490–499

    Article  PubMed  Google Scholar 

  • Legatt AD (2002) Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol 19:396–408

    Article  PubMed  Google Scholar 

  • Leonetti JP, Marzo SJ (1999) Translabyrinthine approach. Oper Tech Neurosurg 2:52–57

    Article  Google Scholar 

  • Levine RA (1981) Binaural interaction in brainstem potentials of human subjects. Ann Neurol 9:384–393

    Article  CAS  PubMed  Google Scholar 

  • Markand ON, Lee BI, Warren C, Stoelting RK, King RD, Brown JW, Mahomed Y (1987) Effects of hypothermia on brainstem auditory evoked potentials in humans. Ann Neurol 22:507–513

    Article  CAS  PubMed  Google Scholar 

  • Maslin MR, Munro KJ, El-Deredy W (2013a) Source analysis reveals plasticity in the auditory cortex: evidence for reduced hemispheric asymmetries following unilateral deafness. Clin Neurophysiol 124:391–399

    Article  PubMed  Google Scholar 

  • Maslin MR, Munro KJ, El-Deredy W (2013b) Evidence for multiple mechanisms of cortical plasticity: a study of humans with late-onset profound unilateral deafness. Clin Neurophysiol 124:1414–1421

    Article  PubMed  Google Scholar 

  • McAlpine D, Martin RL, Mossop JE, Moore DR (1997) Response properties of neurons in the inferior colliculus of the monaurally deafened ferret to acoustic stimulation of the intact ear. J Neurophysiol 78:767–779

    CAS  PubMed  Google Scholar 

  • Moffat DA, Baguley DM, Hardy DG, Tsui YN (1989) Contralateral auditory brainstem response abnormalities in acoustic neuroma. J Laryngol Otol 103:835–838

    Article  CAS  PubMed  Google Scholar 

  • Moller AR (2010) Intraoperative neurophysiological monitoring, 3rd edn. Springer, New York

    Google Scholar 

  • Moller AR, Jannetta PJ (1981) Compound action potentials recorded intracranially from the auditory nerve in man. Exp Neurol 74:862–874

    Article  CAS  PubMed  Google Scholar 

  • Moore DR (1994) Auditory brainstem of the ferret: long survival following cochlear removal progressively changes projections from the cochlear nucleus to the inferior colliculus. J Comp Neurol 339:301–310

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, King AJ (2004) Plasticity of binaural systems. In: Parks TN, Rubel EW, Fay RR, Popper AN (eds) Springer handbook of auditory research. Springer-Verlag, New York, pp 96–172

    Google Scholar 

  • Mossop JE, Wilson MJ, Caspary DM, Moore DR (2000) Down-regulation of inhibition following unilateral deafening. Hear Res 147:183–187

    Article  CAS  PubMed  Google Scholar 

  • Norena AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153

    Article  CAS  PubMed  Google Scholar 

  • Ponton CW, Vasama JP, Tremblay K, Khosla D, Kwong B, Don M (2001) Plasticity in the adult human central auditory system: evidence from late-onset profound unilateral deafness. Hear Res 154:32–44

    Article  CAS  PubMed  Google Scholar 

  • Popelar J, Erre JP, Aran JM, Cazals Y (1994) Plastic changes in ipsi-contralateral differences of auditory cortex and inferior colliculus evoked potentials after injury to one ear in the adult guinea pig. Hear Res 72:125–134

    Article  CAS  PubMed  Google Scholar 

  • Ramsden RT (1995) The bloody angle: 100 years of acoustic neuroma surgery. J R Soc Med 88:464P–468P

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22:74–80

    Article  CAS  PubMed  Google Scholar 

  • Salvi RJ, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147:261–274

    Article  CAS  PubMed  Google Scholar 

  • Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457

    Article  CAS  PubMed  Google Scholar 

  • Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J (1998) Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex 8:156–163

    Article  CAS  PubMed  Google Scholar 

  • Selters WA, Brackmann DE (1977) Acoustic tumor detection with brain stem electric response audiometry. Arch Otolaryngol 103:181–187

    Article  CAS  PubMed  Google Scholar 

  • Stockard JJ, Sharbrough FW, Tinker JA (1978) Effects of hypothermia on the human brainstem auditory response. Ann Neurol 3:368–370

    Article  CAS  PubMed  Google Scholar 

  • Thai-Van H (2013) Unilateral deafness: a unique model for the investigation of functional plasticity mechanisms in the human auditory cortex. Clin Neurophysiol 124:1267–1268

    Article  PubMed  Google Scholar 

  • Torossian A (2008) Thermal management during anaesthesia and thermoregulation standards for the prevention of inadvertent perioperative hypothermia. Best Pract Res Clin Anaesthesiol 22:659–668

    Article  PubMed  Google Scholar 

  • Vasama JP, Marttila T, Lahin T, Makela JP (2001) Auditory pathway function after vestibular schwannoma surgery. Acta Otolaryngol 121:378–383

    Article  CAS  PubMed  Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    Article  CAS  PubMed  Google Scholar 

  • Zeng FG (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Munro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslin, M.R.D., Lloyd, S.K., Rutherford, S. et al. Rapid Increase in Neural Conduction Time in the Adult Human Auditory Brainstem Following Sudden Unilateral Deafness. JARO 16, 631–640 (2015). https://doi.org/10.1007/s10162-015-0526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-015-0526-8

Keywords

Navigation