Skip to main content

Advertisement

Log in

Recalcitrant organic residue compositions and the resource recovery from a food waste treatment facility

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The necessity to mitigate the environmental impact of recalcitrant organic residues (RORs) and harness the valuable bio-energy products has stimulated investigations on the application of pyrolysis technology in the treatment and recycling of RORs. In this study, based on the thermogravimetric analysis results, the ROR temperature requirement for the final decomposition was higher than 450 °C and ranged between 500–650 °C. Experiments on the ROR pyrolysis were conducted in a fixed-bed pyrolysis reactor at temperatures of 600–900 °C and a heating rate of 20 °C min−1. Beneficial products such as char, gas, and bio-oil were obtained during the pyrolysis process. The analyzed biochar average pore diameter of 11.01 nm and surface area of 73.54 m2 g−1 reflect features than can enhance bioprocess technology performance and agronomy application potential. The pyrolytic oil analysis revealed a low heating value (LHV) of 28.4 MJ kg−1 at 600 °C, offering the possibility to address the bio-energy challenges. The results showed that pyrolysis of the ROR from a food waste (FW) treatment facility is a beneficial approach offering waste-to-resources opportunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta P, Ray J, Aggarwal BK, Goyal P (2015) food processing residue analysis and its functional components as related to human health: recent developments. Austin J Nutr Food Sci 3:1–7

    Google Scholar 

  2. Shiung S, Keey R, Yi X, Nasir F, Jusoh A (2016) International biodeterioration and biodegradation fruit waste as feedstock for recovery by pyrolysis technique. Int Biodeterior Biodegradation1–9. https://doi.org/10.1016/j.ibiod.2016.02.021.

  3. Food and Agriculture Organization (2012) Nations of the U. towards the future we want: end hunger and make the transition to sustainable agricultural and food systems. FAO 1–42

  4. Mirmohamadsadeghi S, Karimi K, Tabatabaei M, Aghbashlo M (2019) Biogas production from food wastes: a review on recent developments and future perspectives, vol 7. Elsevier, Amsterdam. https://doi.org/10.1016/j.biteb.2019.100202

  5. Xiong X, Liu X, Yu IKM, Wang L, Zhou J, Sun X et al (2019) Potentially toxic elements in solid waste streams: fate and management approaches. Environ Pollut 253:680–707. https://doi.org/10.1016/j.envpol.2019.07.012

    Article  Google Scholar 

  6. Gao A, Tian Z, Wang Z, Wennersten R, Sun Q (2017) Comparison between the technologies for food waste treatment. Energy Proc 105:3915–3921. https://doi.org/10.1016/J.EGYPRO.2017.03.811

    Article  Google Scholar 

  7. Giwa AS, Xu H, Wu J, Li Y, Chang F, Zhang X et al (2018) Sustainable recycling of residues from the food waste (FW) composting plant via pyrolysis: thermal characterization and kinetic studies. J Clean Prod 180:43–49. https://doi.org/10.1016/J.JCLEPRO.2018.01.122

    Article  Google Scholar 

  8. Capson-Tojo G, Rouez M, Crest M, Steyer JP, Delgenès JP, Escudié R (2016) Food waste valorization via anaerobic processes: a review. Rev Environ Sci Biotechnol 15:499–547. https://doi.org/10.1007/s11157-016-9405-y

    Article  Google Scholar 

  9. Giwa AS, Xu H, Chang F, Zhang X, Ali N, Yuan J et al (2019) Pyrolysis coupled anaerobic digestion process for food waste and recalcitrant residues: fundamentals, challenges, and considerations. Energy Sci Eng 7:1–15. https://doi.org/10.1002/ese3.503

    Article  Google Scholar 

  10. Velghe I, Carleer R, Yperman J, Schreurs S (2011) Study of the pyrolysis of municipal solid waste for the production of valuable products. J Anal Appl Pyrolysis 92:366–375. https://doi.org/10.1016/j.jaap.2011.07.011

    Article  Google Scholar 

  11. Qin B, Liu W, He E, Li Y, Liu C, Ruan J et al (2019) Vacuum pyrolysis method for reclamation of rare earth elements from hyperaccumulator Dicranopteris dichotoma grown in contaminated soil. J Clean Prod 229:480–488. https://doi.org/10.1016/j.jclepro.2019.05.031

    Article  Google Scholar 

  12. Grycová B, Koutník I, Pryszcz A (2016) Pyrolysis process for the treatment of food waste. Bioresour Technol 218:1203–1207. https://doi.org/10.1016/j.biortech.2016.07.064

    Article  Google Scholar 

  13. Giwa AS, Chang F, Xu H, Zhang X, Huang B, Li Y et al (2019) Pyrolysis of difficult biodegradable fractions and the real syngas bio-methanation performance. J Clean Prod 233:711–719. https://doi.org/10.1016/j.jclepro.2019.06.145

    Article  Google Scholar 

  14. Nizami AS, Saville BA, Maclean HL (2013) Anaerobic digesters: perspectives and challenges. Bioenergy 9780203137:139–151. https://doi.org/10.4324/9780203137697

    Article  Google Scholar 

  15. Chang FM, Wang QB, Segun G, Jia JW, Wang KJ (2015) Two-stage catalytic pyrolysis of sewage sludge for syngas production. Zhongguo Huanjing Kexue/China Environ Sci 35:804–810

    Google Scholar 

  16. Ghosh A, Debnath B, Ghosh SK, Das B, Sarkar JP (2018) Sustainability analysis of organic fraction of municipal solid waste conversion techniques for efficient resource recovery in India through case studies. J Mater Cycles Waste Manag 20:1969–1985. https://doi.org/10.1007/s10163-018-0721-x

    Article  Google Scholar 

  17. Pecchi M, Baratieri M (2019) Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: a review. Renew Sustain Energy Rev 105:462–475. https://doi.org/10.1016/J.RSER.2019.02.003

    Article  Google Scholar 

  18. Xiong X, Yu IKM, Tsang DCW, Bolan NS, Sik Ok Y, Igalavithana AD et al (2019) Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects. Chem Eng J 375:121983. https://doi.org/10.1016/j.cej.2019.121983

    Article  Google Scholar 

  19. Giwa AS, Ali N, Vakili M, Guo X, Liu D, Wang K (2020) Opportunities for holistic waste stream valorization from food waste treatment facilities: a review. Rev Chem Eng. https://doi.org/10.1515/revce-2019-0064

    Article  Google Scholar 

  20. Wan Mahari WA, Chong CT, Lam WH, Anuar TNST, Ma NL, Ibrahim MD et al (2018) Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment. Energy Convers Manag 171:1292–1301. https://doi.org/10.1016/j.enconman.2018.06.073

    Article  Google Scholar 

  21. Lam SS, Wan Mahari WA, Ok YS, Peng W, Chong CT, Ma NL et al (2019) Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: recovery of cleaner liquid fuel and techno-economic analysis. Renew Sustain Energy Rev 115:109359. https://doi.org/10.1016/j.rser.2019.109359

    Article  Google Scholar 

  22. Alhassan M, Andresen J (2013) Effect of bone during fixed bed pyrolysis of pistachio nut shell. Int J Sci Eng Investig 2:37–48

    Google Scholar 

  23. BSI (2009a) BS EN 14774-3:2009 Solid biofuels—determination of moisture content-oven dry method. Part 3. Moisture in general analysis sample n.d

  24. BSI (2009b) BS EN 14775:2009 Solid biofuels—determination of ash content

  25. BSI (2009c) BS EN 15148:2009 Solid biofuels – determination of the content of volatile matter.

  26. Titiloye JO, Abu Bakar MS, Odetoye TE (2013) Thermochemical characterisation of agricultural wastes from West Africa. Ind Crops Prod 47:199–203. https://doi.org/10.1016/j.indcrop.2013.03.011

    Article  Google Scholar 

  27. Opatokun SA, Kan T, Al Shoaibi A, Srinivasakannan C, Strezov V (2016) Characterization of food waste and its digestate as feedstock for thermochemical processing. Energy Fuels 30:1589–1597. https://doi.org/10.1021/acs.energyfuels.5b02183

    Article  Google Scholar 

  28. ASTM (2000) Standard test method for gross calorific value of coal and coke, ASTM International D2015

  29. Opatokun SA, Strezov V, Kan T (2015) Product based evaluation of pyrolysis of food waste and its digestate. Energy 92:349–354. https://doi.org/10.1016/j.energy.2015.02.098

    Article  Google Scholar 

  30. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  31. Akinrinola FS, Darvell LI, Jones JM, Williams A, Fuwape JA (2014) Characterization of selected Nigerian biomass for combustion and pyrolysis applications. Energy Fuels 28:3821–3832

    Article  Google Scholar 

  32. Çepelioğullar Ö, Pütün AE (2014) Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. J Anal Appl Pyrolysis 110:363–374. https://doi.org/10.1016/j.jaap.2014.10.002

    Article  Google Scholar 

  33. Aboulkas A, El Harfi K, Nadifiyine M, El Bouadili A (2008) Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. J Therm Anal Calorim 91:737–743. https://doi.org/10.1007/s10973-007-8661-z

    Article  Google Scholar 

  34. Bhattacharya P, Steele PH, Hassan EBM, Mitchell B, Ingram L, Pittman CU (2009) Wood/plastic copyrolysis in an auger reactor: chemical and physical analysis of the products. Fuel 88:1251–1260. https://doi.org/10.1016/J.FUEL.2009.01.009

    Article  Google Scholar 

  35. Oyedun AO, Gebreegziabher T, Ng DKS, Hui CW (2014) Mixed-waste pyrolysis of biomass and plastics waste—a modelling approach to reduce energy usage. Energy 75:127–135. https://doi.org/10.1016/j.energy.2014.05.063

    Article  Google Scholar 

  36. Milne T, Agblevor F, Davis M, Deutch S, Johnson D (1997) A review of the chemical composition of fast-pyrolysis oils from biomass. In: Bridgwater AV, Boocock DGB (eds) Dev. Thermochem. biomass conversation vol 1/vol 2. Springer, Dordrecht, Netherlands, pp 409–424. https://doi.org/10.1007/978-94-009-1559-6_32

  37. He M, Xiao B, Liu S, Hu Z, Guo X, Luo S et al (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrolysis 87:181–187. https://doi.org/10.1016/j.jaap.2009.11.005

    Article  Google Scholar 

  38. Basu P, Basu P (2010) Chapter 9—production of synthetic fuels and chemicals from biomass. In: Biomass gasif. pyrolysis, pp 301–323. https://doi.org/10.1016/B978-0-12-374988-8.00009-X

  39. Przybyla G, Rei A, Silveira R, Willian C, Belli P (2019) Potential use of methane and syngas from residues generated in rice industries of Pelotas. Thermal and Electrical Energy, Rio Grande do Sul, p 134. https://doi.org/10.1016/j.renene.2018.11.063

  40. Kohn MP (2012) Catalytic reforming of biogas for syngas production. Ph.D. thesis, Columbia. University in Department of Earth and Environmental Engineering, Acad Commons n.d., New York, p 171

  41. Méndez A, Terradillos M, Gascó G (2013) Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J Anal Appl Pyrolysis 102:124–130. https://doi.org/10.1016/j.jaap.2013.03.006

    Article  Google Scholar 

  42. Bian R, Ma B, Zhu X, Wang W, Li L, Joseph S et al (2016) Pyrolysis of crop residues in a mobile bench-scale pyrolyser: product characterization and environmental performance. J Anal Appl Pyrolysis 119:52–59. https://doi.org/10.1016/j.jaap.2016.03.018

    Article  Google Scholar 

  43. Nanda S, Azargohar R, Kozinski JA, Dalai AK (2014) Characteristic studies on the pyrolysis products from hydrolyzed canadian lignocellulosic feedstocks. Bioenerg Res 7:174–191

    Article  Google Scholar 

  44. Fu P, Hua S, Xiang J, Sun L, Su S (2012) Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. J Anal Appl Pyrolysis 98:177–183

    Article  Google Scholar 

  45. Liu C, Li H, Zhang Y, Liu C (2016) Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste. Bioresour Technol 219:252–260. https://doi.org/10.1016/j.biortech.2016.07.130

    Article  Google Scholar 

  46. Uzun BB, Apaydin-Varol E, Ates F, Özbay N (2010) Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel 89:176–184

  47. Xue Y, Zhou S, Brown RC, Kelkar A, Bai X (2015) Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156:40–46. https://doi.org/10.1016/j.fuel.2015.04.033

    Article  Google Scholar 

  48. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water. Chemosphere 99:19–33

    Article  Google Scholar 

  49. Jiang ZX, Zheng H, Li FM (2013) Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China. Environ Sci 34:2486–2492

    Google Scholar 

  50. Li H, Dong X, da Silva EB, de Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  Google Scholar 

  51. Cai J, He P, Wang Y, Shao L, Lü F (2016) Effects and optimization of the use of biochar in anaerobic digestion of food wastes. Waste Manag Res 34:409–416. https://doi.org/10.1177/0734242X16634196

    Article  Google Scholar 

  52. Giwa AS, Xu H, Chang F, Wu J, Li Y, Ali N et al (2019) Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations. J Environ Chem Eng 7:103067. https://doi.org/10.1016/j.jece.2019.103067

    Article  Google Scholar 

  53. Neumann J, Binder S, Apfelbacher A, Gasson JR, Ramírez García P, Hornung A (2015) Production and characterization of a new quality pyrolysis oil, char and syngas from digestate—introducing the thermo-catalytic reforming process. J Anal Appl Pyrolysis 113:137–142. https://doi.org/10.1016/j.jaap.2014.11.022

    Article  Google Scholar 

  54. Sahoo K, Kumar A, Chakraborty JP (2020) A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-020-01114-2

    Article  Google Scholar 

  55. Punsuwan N, Tangsathitkulchai C (2014) Product characterization and kinetics of biomass pyrolysis in a three-zone free-fall reactor

  56. Moghadam RA, Yusup S, Uemura Y, Chin BLF, Lam HL, Al SA (2014) Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process. Energy 75:40–44. https://doi.org/10.1016/j.energy.2014.04.062

    Article  Google Scholar 

  57. Pütün E, Ates F, Pütün AE (2008) Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel 87:815–824

  58. Önal E, Uzun BB, Pütün AE (2014) Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Convers Manag 78:704–710. https://doi.org/10.1016/J.ENCONMAN.2013.11.022

    Article  Google Scholar 

  59. Sahar SS, Iqbal J, Ullah I, Bhatti HN, Nouren S, et al. Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustain Cities Soc 2018;41:220–226. https://doi.org/10.1016/j.scs.2018.05.037

  60. Önal EP, Uzun BB, Pütün AE (2011) Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process Technol 92:879–885. https://doi.org/10.1016/J.FUPROC.2010.12.006

    Article  Google Scholar 

  61. Martínez JD, Veses A, Mastral AM, Murillo R, Navarro MV, Puy N et al (2014) Co-pyrolysis of biomass with waste tyres: upgrading of liquid bio-fuel. Fuel Process Technol 119:263–271. https://doi.org/10.1016/J.FUPROC.2013.11.015

    Article  Google Scholar 

  62. Choudhury ND, Chutia RS, Bhaskar T, Kataki R (2014) Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J Mater Cycles Waste Manag 16:449–459. https://doi.org/10.1007/s10163-014-0268-4

    Article  Google Scholar 

  63. Bridgwater T (2018) Challenges and opportunities in fast pyrolysis of biomass: Part II. Johnson Matthey Technol Rev 62:150–160. https://doi.org/10.1595/205651318X696738

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (Grant No. 2017ZX07102-004). Additional support via Lab 913, Tsinghua University, School of Environment and the Waste water Pollution Control and Biomass grant (No. 01160056) of the Green Intelligence Environmental School, Yangtze Normal University are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdulmoseen Segun Giwa, Chang Fengmin or Kaijun Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, A.S., Xu, H., Fengmin, C. et al. Recalcitrant organic residue compositions and the resource recovery from a food waste treatment facility. J Mater Cycles Waste Manag 23, 1479–1489 (2021). https://doi.org/10.1007/s10163-021-01229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01229-0

Keywords

Navigation