Skip to main content
Log in

Spatial and temporal dynamics of the steady-state phytoplankton assemblages in a temperate shallow hypertrophic lake (Lake Manyas, Turkey)

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Spatial and temporal dynamics of phytoplankton biomass and species composition in the shallow hypertrophic Lake Manyas, Turkey, were studied biweekly from January 2003 to December 2004 to determine steady-state phases in phytoplankton assemblages. Steady-state phases were defined when one, two or three coexisting species contributed to at least 80% of the standing biomass for at least 2 weeks and during that time the total biomass did not change significantly. Ten steady-state phases were identified throughout the study peiod. During those periods, Achnanthes microcephala (Kützing) Cleve twice dominated the phytoplankton biomass alone and contributed to more than 50% of the total biomass in seven phases. Microcystis aeruginosa (Kützing) Kützing, Anabaena spiroides Klebahn, Cyclotella stylorum Brightwell, Pediastrum boryanum (Turpin) Meneghini and Phacus pusillus Lemmermann were also represented once in steady-state phytoplankton assemblages. A. microcephala was dominant usually during cold periods of the year, while M. aeruginosa and A. spiroides were usually dominant in warm seasons. The total number of species showed a clear decrease during steady-state phases at all stations. All stations were significantly different in terms of the measured physical and chemical parameters (P < 0.05) and phytoplankton biomass (F = 117, P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbay N, Anul N, Yerli S, Soyupak S, Yurteri C (1999) Seasonal distribution of large phytoplankton in the Keban Dam Reservoir. J Plankton Res 21:771–787

    Article  Google Scholar 

  • Albay M, Akcaalan R (2003) Comparative study of periphyton colonization on Common Reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia 506–509:531–540

    Article  Google Scholar 

  • Alvarez-Cobelas M, Jacobsen BA (1992) Hypertrophic phytoplankton: an overview. Freshw Forum 2:184–199

    Google Scholar 

  • American Public Health Association (APHA) (1995) Standard methods for the examination of water and wastewater, 13th edn. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington DC

  • Aykulu G, Obalı O, Gönülol A (1983) Distribution of phytoplankton in lakes around Ankara (in Turkish). Turk J Bot 7:277–288

    Google Scholar 

  • Borics G, Tothmeresz B, Grigorszky I, Padisak J, Varbyro G, Szabo S (2003) Algal assemblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502:145–155

    Article  CAS  Google Scholar 

  • Bourrelly P (1970) Les Algues D’eau Douce Tome III: Les Algues Bleues et Rouges, Eugleniens, Peridiniens, et Cryptomonadines. Boudee, Paris

    Google Scholar 

  • Büyükışık B, Parlak H (1989) Investigation on ecology of the Bird lake Bandirma (in Turkish). Ankara Univ J Fish 6:160–175

    Google Scholar 

  • Çelik K (2006) Spatial and seasonal variations in chlorophyll-nutrient relationships in the shallow hypertrophic Lake Manyas, Turkey. Environ Monit Assess 117:261–269

    Article  PubMed  CAS  Google Scholar 

  • Çelik K, Ongun T (2006) Seasonal dynamics of phytoplankton assemblages across nutrient gradients in the shallow hypertrophic Lake Manyas, Turkey. Lake Reserv Manage 22(3):250–260

    Article  Google Scholar 

  • Çelik K, Ongun T (2007) The relationships between certain physical and chemical variables and the seasonal dynamics of phytoplankton assemblagesof two inlets of a shallow hypertrophic lake with different nutrient inputs. Environ Monit Assess 124:321–330

    Article  PubMed  CAS  Google Scholar 

  • Davidson K, Wood G, John E, Flynn K (1999) An investigation of non-steady-state algal growth I. An experimental model ecosystem. J Plankton Res 21:811–837

    Article  Google Scholar 

  • Dokulil MT, Teubner K (2003) Eutrophication and restoration of shallow lakes—the concept of stable equilibria revisited. Hydrobiologia 506–509:29–35

    Article  Google Scholar 

  • Edmondson WT (1971) Productivity in freshwaters. IPB Handbook No 17. Blackwell, Oxford

    Google Scholar 

  • El-Bestawy EA, El-Salam AZA, Mansy AERH (2007) Potential use of environmental cyanobacterial species in bioremediation of lindane-contaminated effluents. Int Biodeterior Biodegradation 59:180–192

    Article  CAS  Google Scholar 

  • Elliott JA, Reynolds CS, Irish TE (2000) The diversity and succession of phytoplankton communities in disturbance-free environments, using the model PROTECH. Archiv Hydrobiol 149:241–258

    Google Scholar 

  • Feuillade JB, Feuillade M (1987) Modelling steady-state growth and photosynthesis rates of Oscillatoria rubescens continuous cultures in relation to temperature and irradiance. J Plankton Res 9:445–457

    Article  Google Scholar 

  • Geitler L (1925) Cyanophyceae. In: Pascher A (ed) Die Süsswasser Flora Deutschland. Österreichs und der Schweiz. Gustav Fischer, Jena, pp 1–450

    Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Hustedt F (1930) Baccillariophyta (Diatome). In: Pascher A (ed) Die Süsswasser Flora Mitteleuropas. Gustav Fischer, Jena, pp 1–466

    Google Scholar 

  • Huszar V, Kruk C, Caraco N (2003) Steady-state assemblages of phytoplankton in four temperate lakes (NE USA). Hydrobiologia 502:97–109

    Article  Google Scholar 

  • Jensen NG (1985) The Pennate Diatoms (Hustedt’s Die Kieselalgen, 2. Teil). Koeltz, Koenigstein

    Google Scholar 

  • Johnson RE, Tuchman NC, Peterson CG (1997) Changes in the vertica microdistribution of diatoms within a developing periphyton mat. J N Am Benthol Soc 16:503–519

    Article  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Karafistan A, Arık-Çolakoğlu F (2005) Physical, chemical and microbiological water quality of the Manyas Lake, Turkey. Mitig Adapt Strateg Glob Change 10:127–143

    Article  Google Scholar 

  • Kelly M (2000) Identification of common benthic diatoms in rivers. Field Stud 9:583–700

    Google Scholar 

  • Komárek and Fott (1983) Chlorophyceae (Griinalgen) Ordnung Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Siisswassers 7(1). Schweizerbart, Stuttgart, pp 1–1044

  • Komarkova J, Tavera R (2003) Steady state of phytoplankton assemblage in the tropical Lake Catemaco (Mexico). Hydrobiologia 502:187–196

    Article  Google Scholar 

  • Miola A, Bondesan A, Corain L, Favaretto S, Mozzi P, Piovan S, Sostizzo I (2006) Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: interplay between vegetation, hydrology and sedimentary environment. Rev Palaeobot Palynol 141:53–81

    Article  Google Scholar 

  • Moustaka-Gouni M, Vardaka EE, Tryfon E (2007) Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia 575:129–140

    Article  Google Scholar 

  • Naselli-Flores L, Padisak J, Dokulil MT, Chorus I (2003) Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502:395–403

    Article  Google Scholar 

  • Nixdorf B, Mischke U, Rucker J (2003) Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111–121

    Article  Google Scholar 

  • Organisation for Economic Co-operation, Development (OECD) (1982) Eutrophication of waters. Monitoring, assessment and control. OECD, Paris

    Google Scholar 

  • Padisak J, Reynolds CS (2003) Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506–509:1–11

    Article  Google Scholar 

  • Padisak J, Borics G, Feher G, Grigorszky I, Oldal I, Schmidt A, Zambone-Doma Z (2003) Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502:157–168

    Article  Google Scholar 

  • Reynolds CS (1993) Scales of disturbance and their role in plankton ecology. Hydrobiologia 249:157–171

    Article  Google Scholar 

  • Reynolds CS, Thompsom JM, Ferguson AJD, Wiseman SW (1982) Loss processes in the population dynamics of phytoplankton maintained in closed systems. J Plankton Res 4:561–600

    Article  Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  • SAS Institute (1990) SAS/STAT Users guide, 4th edn. Cary

  • Shipin OV, Rose PD, Meiring PGJ (1999) Microbial processes underlying the PETRO concept (trickling filter variant). Water Res 33:1645–1651

    Article  CAS  Google Scholar 

  • Sommer U, Padisak J, Reynold CS, Juhasz-Nagy P (1993) Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249:1–7

    Article  Google Scholar 

  • Stoyneva MP (1998) Development of the phytoplankton of the shallow Srebarna Lake (northeastern Bulgaria) across a trophic gradient. Hydrobiologia 369–370:259–267

    Article  Google Scholar 

  • Stoyneva MP (2003) Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502:169–176

    Article  Google Scholar 

  • Sun J, Lıu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346

    Article  Google Scholar 

  • Turkish Ministry of Environment and Forestry (2005) The environmental report for the city of Balıkesir (in Turkish), Ankara

  • ter Braak CJF, Verdonschot PMF (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton. Methodik Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602

    Article  PubMed  CAS  Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological analyses. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zohary T, Pais-Madeira AM, Robarts RD, Hambright KD (1995) Cyanobacteria–phytoplankton dynamics of a hypertrophic African lake. Water Sci Technol 32:103–104

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge our gratitude to Pitsa Johnson, Faculty of Clemson University, USA, for editing the manuscript prior to submission. We would like to thank the staff of Kuşcenneti National Park administration for their courtesy and help during the fieldwork. The support for this research came from Balıkesir University Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Çelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çelik, K., Ongun, T. Spatial and temporal dynamics of the steady-state phytoplankton assemblages in a temperate shallow hypertrophic lake (Lake Manyas, Turkey). Limnology 9, 115–123 (2008). https://doi.org/10.1007/s10201-007-0233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-007-0233-1

Keywords

Navigation