Skip to main content
Log in

Estimation of carbon biomass and community structure of planktonic bacteria in Lake Biwa using respiratory quinone analysis

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

The relationship between bacterial respiratory quinone (RQ) concentration and biomass was assessed for Lake Biwa bacterial assemblages to evaluate the utility of bacterial RQ concentration as an indicator of bacterial carbon. The biomass estimated from the RQ concentration correlated well with that from cell volume, indicating that RQ concentration is an appropriate indicator of bacterial biomass. The estimated carbon content per unit of RQ (carbon conversion factor) of bacteria was 0.67 mg C nmol RQ−1. Bacterial carbon biomass, which was estimated from the RQ concentration using the conversion factor, ranged between 0.008 and 0.054 mg C L−1 (average 0.025 mg C L−1) at 5 m depth and between 0.010 and 0.024 mg C L−1 (average 0.015 mg C L−1) at 70 m depth. Ubiquinone-8-containing bacteria dominated the epilimnion and hypolimnion. Compared to conventional image analysis, bacterial RQ analysis is a less laborious method of simultaneously determining bacterial biomass and community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev 5:782–791. doi:10.1038/nrmicro1747

    Article  CAS  Google Scholar 

  • Bjørsen PK (1986) Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol 51:1199–1204

    Google Scholar 

  • Blackburn N, Hagström Å, Wikner J, Cuadros-Hansson R, Bjørsen PK (1998) Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl Environ Microbiol 64:3246–3255

    PubMed  CAS  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed  CAS  Google Scholar 

  • Ducklow HW (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 85–120

    Google Scholar 

  • Gasol JM, Zweifel UL, Peters F, Fuhrman JA, Hagstrom A (1999) Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl Environ Microbiol 65:4475–4483

    PubMed  CAS  Google Scholar 

  • Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  Google Scholar 

  • Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66:5053–5065. doi:10.1128/AEM.66.11.5053-5065.2000

    Article  PubMed  Google Scholar 

  • Hamada K, Miura A, Fujita M, Hitomi T, Kubota T, Shiratani E (2010) Evaluation of the characteristics of microorganisms that contribute to denitrification in the paddy drainage treatment apparatus by quinone composition measurement. J Water Environ Technol 8:421–427. doi:10.2965/jwet.2010.421

    Article  Google Scholar 

  • Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment. J Microbiol Meth 5:243–254. doi:10.1016/0167-7012(86)90049-7

    Article  CAS  Google Scholar 

  • Hiraishi A (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosci Bioeng 88:449–460. doi:10.1016/S1389-1723(00)87658-6

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A, Kato K (1999) Quinone profiles in lake sediments: implications for microbial diversity and community structures. J Gen Appl Microbiol 45:221–227. doi:10.2323/jgam.45.221

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A, Morishima Y, Takeuchi J (1991) Numerical analysis of lipoquinone patterns in monitoring bacterial community dynamics in wastewater treatment systems. J Gen Appl Microbiol 37:57–70

    Article  CAS  Google Scholar 

  • Hiraishi A, Iwasaki M, Kawagishi T, Yoshida N, Narihiro T, Kato K (2003) Significance of lipoquinones as quantitative biomarkers of bacterial populations in the environment. Microbes Environ 18:89–93. doi:10.1264/jsme2.18.89

    Article  Google Scholar 

  • Hu H-Y, Lim B-R, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Meth 47:17–24. doi:10.1016/S0167-7012(01)00286-X

    Article  CAS  Google Scholar 

  • Kaiser K, Benner R (2008) Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr 53:99–112. doi:10.4319/lo.2008.53.1.0099

    Article  CAS  Google Scholar 

  • Kawasaki N, Benner R (2006) Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr 51:2170–2180. doi:10.4319/lo.2006.51.5.2170

    Article  CAS  Google Scholar 

  • Kawasaki N, Fukuda R, Ogawa H, Nagata T, Benner R (2011) Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean. Aquat Microb Ecol 62:165–176. doi:10.3354/ame01462

    Article  Google Scholar 

  • Kim C, Nishimura Y, Nagata T (2006) Role of dissolved organic matter in hypolimnetic mineralization of carbon and nitrogen in a large, monomictic lake. Limnol Oceanogr 51:70–78. doi:10.4319/lo.2006.51.1.0070

    Article  CAS  Google Scholar 

  • Kirchman DL, Ditel AI, Findlay SEG, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257. doi:10.3354/ame035243

    Article  Google Scholar 

  • Koike I, Hara S, Terauchi K, Kogure K (1990) Role of sub-micrometer particles in the ocean. Nature 345:242–244. doi:10.1038/345242a0

    Article  Google Scholar 

  • Kroer N (1994) Relationships between biovolume and carbon and nitrogen content of bacterioplankton. FEMS Microb Ecol 13:217–224

    Article  Google Scholar 

  • Kunihiro T, Miyazaki T, Uramoto Y, Kinoshita K, Inoue A, Tamaki S, Hama D, Tsutsumi H, Ohwada K (2008) The succession of microbial community in the organic rich fish-farm sediment during bioremediation by introducing artificially mass-cultured colonies of a small polychaete, Capitella sp. I. Mar Pollut Bull 57:68–77. doi:10.1016/j.marpolbul.2007.10.009

    Article  PubMed  CAS  Google Scholar 

  • Kunihiro T, Takasu H, Miyazaki T, Uramoto Y, Kinoshita K, Yodnarasri S, Hama D, Wada M, Kogure K, Ohwada K, Tsutsumi H (2011) Increase in Alphaproteobacteria in association with a polychaete, Capitella sp. I, in the organically enriched sediment. ISME J 5:1818–1831. doi:10.1038/ismej.2011.57

    Article  PubMed  CAS  Google Scholar 

  • Langenheder S, Lindström ES, Tranvik LJ (2005) Weak coupling between community composition and functioning of aquatic bacteria. Limnol Oceanogr 50:957–967. doi:10.4319/lo.2005.50.3.0957

    Article  Google Scholar 

  • Langenheder S, Lindström ES, Tranvik LJ (2006) Structure and function of bacterial communities emerging from different sources under identical conditions. Appl Environ Microbiol 72:212–220

    Article  PubMed  CAS  Google Scholar 

  • Li Y (2010) Microbial respiratory quinones as indicator of ecophysiological redox conditions. Front Earth Sci China 4:195–204. doi:10.1007/s11707-010-0019-3

    Article  CAS  Google Scholar 

  • Lim B-R, Ahn K-H, Songprasert P, Lee S-H, Kim M-J (2004) Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic wastewater. Desalination 161:145–153. doi:10.1016/S0011-9164(04)90050-1

    Article  CAS  Google Scholar 

  • Loferer-Krößbacher M, Klima J, Psenner R (1998) Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol 64:688–694

    Google Scholar 

  • Mito S, Kawashima M, Sohrin Y (2002) Characterization of suspended solids in Lake Biwa by measuring their elemental composition of Al, Si, P, S, K, Ca, Ti, Mn, and Fe. Limnology 3:11–19. doi:10.1007/s102010200001

    Article  CAS  Google Scholar 

  • Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol 65:478–479

    Article  PubMed  CAS  Google Scholar 

  • Nagata T (1986) Carbon and nitrogen content of natural planktonic bacteria. Appl Environ Microbiol 52:28–32

    PubMed  CAS  Google Scholar 

  • Nagata T, Watanabe Y (1990) Carbon- and nitrogen-to-volume ratios of bacterioplankton grown under different nutritional conditions. Appl Environ Microbiol 56:1303–1309

    PubMed  CAS  Google Scholar 

  • Nakano S, Kawabata Z (2000) Changes in cell volume of bacteria and heterotrophic nanoflagellates in a hypereutrophic pond. Hydrobiologia 428:197–203. doi:10.1023/A:1003971516725

    Article  Google Scholar 

  • Nishimura Y, Kim C, Nagata T (2005) Vertical and seasonal variations of bacterioplankton subgroups with different nucleic acid contents: possible regulation by phosphorus. Appl Microbiol 71:5828–5836. doi:10.1128/AEM.71(10),5828-5836.2005

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948. doi:10.4319/lo.1980.25.5.0943

    Article  Google Scholar 

  • Posch T, Loferer-Krößbacher M, Gao G, Alfreider A, Pernthaler J, Psenner R (2001) Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquat Microb Ecol 25:55–63. doi:10.3354/ame025055

    Article  Google Scholar 

  • Posch T, Franzoi J, Prader M, Salcher MM (2009) New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat Microb Ecol 54:113–126. doi:10.3354/ame01269

    Article  Google Scholar 

  • Saitou K, Nagasaki K, Yamakawa H, Hu H-Y, Fujie K (1999) Linear relation between the amount of respiratory quinones and the microbial biomass in soil. Soil Sci Plant Nutr 45:775–778. doi:10.1080/00380768.1999.10415843

    Article  CAS  Google Scholar 

  • Sinha B, Annachhatre AP (2007) Assessment of partial nitrification reactor performance through microbial population shift using quinone profile, FISH and SEM. Bioresour Technol 98:3602–3610. doi:10.1016/j.biortech.2006.11.034

    Article  PubMed  CAS  Google Scholar 

  • Straza TRA, Cottrell MT, Ducklow HW, Kirchman DL (2009) Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Appl Environ Microbiol 75:4028–4034. doi:10.1128/AEM.00183-09

    Article  PubMed  CAS  Google Scholar 

  • Takasu H, Kunihiro T, Nakano S (2012) Vertical community structure of bacteria and phytoplankton in Lake Biwa using respiratory quinone and pigment analysis. In: Kawaguchi M, Misaki K, Sato H, Yokokawa T, Itai T, Nguyen TM, Ono J, Tanabe S (eds) Interdisciplinary studies on environmental chemistry—environmental pollution and ecotoxicology, vol 6. Terrapub, Tokyo, pp 377–385

  • Villanueva L, Navarrete A, Urmeneta J, Geyer R, White DC, Guerrero R (2007) Monitoring diel variations of physiological status and bacterial diversity in an estuarine microbial mat: an integrated biomarker analysis. Microbiol Ecol 54:523–531. doi:10.1007/s00248-007-9224-3

    Article  Google Scholar 

  • Yokokawa T, Nagata T (2005) Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl Environ Microbiol 71:6799–6807. doi:10.1128/AEM.71.11.6799-6807.2005

    Article  PubMed  CAS  Google Scholar 

  • Yokokawa T, Nagata T (2010) Linking bacterial community structure to carbon fluxes in marine environments. J Oceanogr 66:1–12. doi:10.1007/s10872-010-0001-4

    Article  CAS  Google Scholar 

  • Yokokawa T, Nagata T, Cottrell MT, Kirchman DL (2004) Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol Oceanogr 49:1620–1629. doi:10.4319/lo.2004.49.5.1620

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Tadatoshi Koitabashi and Dr. Yukiko Goda for their assistance during field sampling, and Dr. Naoto F. Ishikawa and Mr. Yusuke Okazaki for their assistance with sample analyses, as well as their encouragement throughout this study. We are grateful to the handling editor, Dr. Hisaya Kojima, and two anonymous reviewers whose comments greatly improved the manuscript. We also thank Drs. Masayuki Ushio, Taichi Yokokawa, Ryuji Kondo, Fereidoun Rassoulzadegan, and other colleagues at the Center for Ecological Research, Kyoto University for their valuable comments on this study. This study was partly supported by JSPS KAKENHI (grant no. 23370010 to S.N.; grant nos. 21710081 and 23710010 to T.K.; grant no. 11J00658 to H.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Nakano.

Additional information

Handling Editor: Hisaya Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasu, H., Kunihiro, T. & Nakano, Si. Estimation of carbon biomass and community structure of planktonic bacteria in Lake Biwa using respiratory quinone analysis. Limnology 14, 247–256 (2013). https://doi.org/10.1007/s10201-013-0402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-013-0402-3

Keywords

Navigation