Skip to main content
Log in

The Joy and Pain of Skew Symmetry

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we review recent progress on two related issues. Firstly, the discretisation of partial differential equations of quantum mechanics in a semiclassical regime. Due to the presence of a small parameter, such equations exhibit high oscillations and multiscale behaviour, rendering them difficult to discretise. We describe a methodology, using symmetric Zassenhaus splittings in a free Lie algebra, which allows for their exceedingly fast and accurate numerics. The imperative of preserving the unitarity of the underlying flow takes us to the second theme of this paper, approximation of derivatives by skew-symmetric matrices. Here, we identify a gap in the elementary theory of finite-difference approximations: in the presence of Dirichlet boundary conditions, it is impossible to approximate the derivative to order higher than two on a uniform grid! This motivates the investigation of skew symmetry on non-uniform grids, an endeavour which, although still in its infancy, is already replete with interesting results. We conclude by discussing a number of generalisations and open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bader, P., Iserles, A., Kropielnicka, K. & Singh, P. (2014), ‘Effective approximation for the semiclassical Schrödinger equation’, Found. Comput. Math. 14(4), 689–720.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bransden, B. H. & Joachain, C. J. (1983), Physics of Atoms and Molecules, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  3. Casas, F. & Murua, A. (2009), ‘An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications’, J. Math. Phys. 50(3), 033513, 23.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gaim, W. & Lasser, C. (2014), ‘Corrections to Wigner type phase space methods’, Nonlinearity 27(12), 2951–2974.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gottlieb, D., Hussaini, M. Y. & Orszag, S. A. (1984), Theory and applications of spectral methods, in ‘Spectral methods for partial differential equations’, SIAM, Philadelphia, PA, pp. 1–54.

    Google Scholar 

  6. Griffiths, J. D. (2004), Introduction to Quantum Mechanics, 2nd edn, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  7. Hagedorn, G. A. (1980), ‘Semiclassical quantum mechanics. I. The \(\hbar \rightarrow 0\) limit for coherent states’, Comm. Math. Phys. 71(1), 77–93.

    Article  MathSciNet  Google Scholar 

  8. Hairer, E. & Iserles, A. (2016), ‘Numerical stability in the presence of variable coefficients’, Found. Comput. Maths. DOI:10.1007/s10208-015-9263-y.

  9. Hairer, E., Lubich, C. & Wanner, G. (2010), Geometric numerical integration, Vol. 31 of Springer Series in Computational Mathematics, Springer, Heidelberg. Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition.

  10. Hesthaven, J. S., Gottlieb, S. & Gottlieb, D. (2007), Spectral methods for time-dependent problems, Vol. 21 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge.

  11. Hochbruck, M. & Lubich, C. (1997), ‘On Krylov subspace approximations to the matrix exponential operator’, SIAM J. Numer. Anal. 34(5), 1911–1925.

    Article  MathSciNet  MATH  Google Scholar 

  12. Iserles, A. (2009), A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics, second edn, Cambridge University Press, Cambridge.

    Google Scholar 

  13. Iserles, A. (2014), ‘On skew-symmetric differentiation matrices’, IMA J. Numer. Anal. 34(2), 435–451.

    Article  MathSciNet  MATH  Google Scholar 

  14. Iserles, A., Kropielnicka, K. & Singh, P. (2015), On the discretisation of the semiclassical Schrödinger equation with time-dependent potential, Technical Report 2015/NA02, DAMTP, University of Cambridge.

    Google Scholar 

  15. Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000), ‘Lie-group methods’, 9, 215–365.

  16. Jin, S., Markowich, P. & Sparber, C. (2011), ‘Mathematical and computational methods for semiclassical Schrödinger equations’, Acta Numer. 20, 121–209.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lubich, C. (2015), ‘Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics’, Appl. Math. Res. Express. AMRX (2), 311–328.

  18. McLachlan, R. I. & Quispel, G. R. W. (2002), ‘Splitting methods’, Acta Numer. 11, 341–434.

    Article  MathSciNet  MATH  Google Scholar 

  19. Meyer, H. D., Manthe, U. & Cederbaum, L. S. (1990), ‘The multi-configurational time-dependent Hartree approach’, Chem. Phys. Lett. 165, 73–78.

    Article  Google Scholar 

  20. Oteo, J. A. (1991), ‘The Baker-Campbell-Hausdorff formula and nested commutator identities’, J. Math. Phys. 32(2), 419–424.

    Article  MathSciNet  MATH  Google Scholar 

  21. Shapiro, M. & Brumer, P. (2003), Principles of the Quantum Control of Molecular Processes, Wiley-Interscience, Hoboken, NJ.

    MATH  Google Scholar 

  22. Singh, P. (2016), Algebraic theory for higher-order methods in computational quantum mechanics, Technical report, DAMTP, University of Cambridge.

  23. Teufel, S. (2012), ‘Semiclassical approximations for adiabatic slow-fast systems’, EPL. DOI:10.1209/0295-5075/98/50003.

  24. Townsend, A. & Olver, S. (2015), ‘The automatic solution of partial differential equations using a global spectral method’, J. Comput. Phys. 299, 106–123.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Various parts of this paper are based on joint research with my colleagues Philipp Bader (La Trobe), Ernst Hairer (Geneva), Karolina Kropielnicka (Gdańsk) and Pranav Singh (Cambridge). I wish to acknowledge not just their mathematical contribution but also the great pleasure of collaborating with them. I also wish to thank a number of colleagues for very fruitful discussions, in particular Helge Dietert (Cambridge) and Caroline Lasser (Munich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arieh Iserles.

Additional information

Communicated by Albert Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iserles, A. The Joy and Pain of Skew Symmetry. Found Comput Math 16, 1607–1630 (2016). https://doi.org/10.1007/s10208-016-9321-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-016-9321-0

Keywords

Mathematics Subject Classification

Navigation