Skip to main content
Log in

Convergence of the Marker-and-Cell Scheme for the Incompressible Navier–Stokes Equations on Non-uniform Grids

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We prove in this paper the convergence of the Marker-and-Cell scheme for the discretization of the steady-state and time-dependent incompressible Navier–Stokes equations in primitive variables, on non-uniform Cartesian grids, without any regularity assumption on the solution. A priori estimates on solutions to the scheme are proven; they yield the existence of discrete solutions and the compactness of sequences of solutions obtained with family of meshes the space step and, for the time-dependent case, the time step of which tend to zero. We then establish that the limit is a weak solution to the continuous problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Blanc. Error estimate for a finite volume scheme on a MAC mesh for the Stokes problem. In Finite volumes for complex applications II, pages 117–124. Hermes Sci. Publ., Paris, 1999.

  2. P. Blanc. Convergence of a finite volume scheme on a MAC mesh for the Stokes problem with right-hand side in \(H^{-1}\). In Finite volumes for complex applications IV, pages 133–142. ISTE, London, 2005.

  3. F. Boyer and P. Fabrie. Mathematical tools for the study of the incompressible Navier–Stokes equations and related models, volume 183 of Applied Mathematical Sciences. Springer, New York, 2013.

  4. E. Chénier, R. Eymard, T. Gallouët, and R. Herbin. An extension of the MAC scheme to locally refined meshes: convergence analysis for the full tensor time-dependent Navier–Stokes equations. Calcolo, 52(1):69–107, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Chénier. Transferts couplés en convection naturelle/mixte pour des écoulements fluides en régime laminaire ou transitionnel - de la modélisation à la simulation numérique. H.D.R. Université Paris-Est, 12 2012.

  6. S. H. Chou and D. Y. Kwak. Analysis and convergence of a MAC-like scheme for the generalized Stokes problem. Numer. Methods Partial Differential Equations, 13(2):147–162, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Deimling. Nonlinear Functional Analysis. Springer, Berlin, 1985.

    Book  MATH  Google Scholar 

  8. R. Eymard, P. Féron, and C. Guichard. Gradient schemes for the incompressible steady Navier–Stokes problem. In 6th International conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources. Université de Pau, 6 2015.

  9. R. Eymard, J. Fuhrmann, and A. Linke. On MAC schemes on triangular Delaunay meshes, their convergence and application to coupled flow problems. Numer. Methods Partial Differential Equations, 30(4):1397–1424, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Eymard, T. Gallouët, M. Ghilani, and R. Herbin. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal., 18(4):563–594, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. In P. G. Ciarlet and J.-L. Lions, editors, Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII, pages 713–1020. North-Holland, Amsterdam, 2000.

    Google Scholar 

  12. R. Eymard, T. Gallouët, R. Herbin, and J.-C. Latché. Analysis tools for finite volume schemes. Acta Math. Univ. Comenian. (N.S.), 76(1):111–136, 2007.

    MathSciNet  MATH  Google Scholar 

  13. R. Eymard, C. Guichard, and R. Herbin. Small-stencil 3d schemes for diffusive flows in porous media. M2AN Math. Model. Numer. Anal., 46:265–290, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Eymard, R. Herbin, and J.-C. Latché. Convergence analysis of a colocated finite volume scheme for the incompressible Navier–Stokes equations on general 2 or 3d meshes. SIAM J. Numer. Anal., 45(1):1–36, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Féron and R. Eymard. Gradient scheme for stokes problem. In Finite volumes for complex applications VII, volume 1, pages 265–274. Springer, London, 2014. Finite Volumes for Complex Applications VII (FVCA VII), Berlin, June 2014.

  16. T. Gallouët and J.-C. Latché. Compactness of discrete approximate solutions to parabolic pdes–application to a turbulence model. Communications on Pure and Applied Analysis, 11(6):2371–2391, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Gallouët, R. Herbin, A. Larcher, and J.-C. Latché. Analysis of a fractional-step scheme for the p1 radiative diffusion model. Computational and Applied Mathematics, pages 1–17, 2014.

  18. T. Gallouët, R. Herbin, and J. Latché. \({W}^{1,q}\) stability of the Fortin operator for the MAC scheme. Calcolo, 69:63–71, 2012. see also http://hal.archives-ouvertes.fr/.

  19. V. Girault and H. Lopez. Finite-element error estimates for the MAC scheme. IMA J. Numer. Anal., 16(3):247–379, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Han and X. Wu. A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal., 35(2):560–571 (electronic), 1998.

  21. F. Harlow and J. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids, 8:2182–2189, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Kanschat. Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme. Internat. J. Numer. Methods Fluids, 56(7):941–950, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Li and S. Sun. The superconvergence phenomenon and proof of the mac scheme for the stokes equations on non-uniform rectangular meshes. Journal of Scientific Computing, pages 1–22, 2014.

  24. J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris, 1967.

    MATH  Google Scholar 

  25. R. A. Nicolaides. Analysis and convergence of the MAC scheme. I. The linear problem. SIAM J. Numer. Anal., 29(6):1579–1591, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. A. Nicolaides and X. Wu. Analysis and convergence of the MAC scheme. II. Navier–Stokes equations. Math. Comp., 65(213):29–44, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. V. Patankar. Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal sciences. Taylor & Francis, Hemisphere Publishing Corporation.

  28. T. A. Porsching. Error estimates for MAC-like approximations to the linear Navier–Stokes equations. Numer. Math., 29(3):291–306, 1977/78.

  29. D. Shin and J. C. Strikwerda. Inf-sup conditions for finite-difference approximations of the Stokes equations. J. Austral. Math. Soc. Ser. B, 39(1):121–134, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Temam. Navier–Stokes equations, volume 2 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, third edition, 1984. Theory and numerical analysis, With an appendix by F. Thomasset.

  31. P. Wesseling. Principles of Computational Fluid Dynamics. Springer, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Herbin.

Additional information

Communicated by Douglas N. Arnold.

Appendix: Discrete Functional Analysis

Appendix: Discrete Functional Analysis

Definition 5.1

(Compactly embedded sequence of spaces) Let B be a Banach space; a sequence \((X_m)_{{m\in \mathbb {N}}}\) of Banach spaces included in B is compactly embedded in B if any sequence \((u_m)_{m\in \mathbb {N}}\) satisfying:

  • \(u_m\in X_m\) (\(\forall m\in \mathbb {N}\)),

  • the sequence \((\Vert u_m\Vert _{X_m})_{{m\in \mathbb {N}}}\) is bounded,

is relatively compact in B.

Definition 5.2

(Compact-continuous sequence of spaces) Let B be a Banach space, and let \((X_m)_{{m\in \mathbb {N}}}\) and \((Y_m)_{{m\in \mathbb {N}}}\) be sequences of Banach spaces such that \(X_m \subset B\) for \(m\in \mathbb {N}\). The sequence \((X_m,Y_m)_{{m\in \mathbb {N}}}\) is compact-continuous in B if the following conditions are satified:

  • The sequence \((X_m)_{{m\in \mathbb {N}}}\) is compactly embedded in B (see Definition 5.1),

  • \(X_m\subset Y_m\) (for all \({m\in \mathbb {N}}\)),

  • if the sequence \((u_m)_{{m\in \mathbb {N}}}\) is such that \(u_m\in X_m\) (for all \({m\in \mathbb {N}}\)), \((\Vert u_m\Vert _{X_m})_{{m\in \mathbb {N}}}\) is bounded and \(\Vert u_m\Vert _{Y_m}\rightarrow 0\) as \(m\rightarrow +\infty \), then any subsequence of \((u_m)_{{m\in \mathbb {N}}}\) converging in B converges to 0 (in B).

The following theorem is proved [4] and is a generalization of a previous work carried out in [16].

Theorem 5.3

(Aubin–Simon Theorem with a sequence of subspaces and a discrete derivative.) Let \(1 \le p < \infty \), let B be a Banach space, and let \((X_m)_{{m\in \mathbb {N}}}\) and \((Y_m)_{{m\in \mathbb {N}}}\) be sequences of Banach spaces such that \(X_m \subset B\) for \(m\in \mathbb {N}\). We assume that the sequence \((X_m,Y_m)_{{m\in \mathbb {N}}}\) is compact-continuous in B. Let \(T>0\) and \((u^{(m)})_{{m\in \mathbb {N}}}\) be a sequence of \(L^{p}(0,T;B)\) satisfying the following conditions:

  • (H1) the sequence \((u^{(m)})_{{m\in \mathbb {N}}}\) is bounded in \(L^{p}(0,T;B)\).

  • (H2) the sequence \((\Vert u^{(m)}\Vert _{L^{1}(0,T;X_m)})_{{m\in \mathbb {N}}}\) is bounded.

  • (H3) the sequence \((\Vert \eth _t u^{(m)}\Vert _{L^{p}(0,T;Y_m)})_{{m\in \mathbb {N}}}\) is bounded.

Then there exists \(u\in L^{p}(0,T;B)\) such that, up to a subsequence, \(u^{(m)}\rightarrow u\) in \(L^{p}(0,T;B)\).

Definition 5.4

(B -limit-included) Let B be a Banach space, \((X_m)_{m\in \mathbb {N}}\) be a sequence of Banach spaces included in B and X be a Banach space included in B. The sequence \((X_m)_{m\in \mathbb {N}}\) is B-limit-included in X if there exists \(C\in \mathbb {R}\) such that if u is the limit in B of a subsequence of a sequence \((u_m)_{{m\in \mathbb {N}}}\) verifying \(u_m\in X_m\) and \(\Vert u_m\Vert _{X_m}\le 1\), then \(u\in X\) and \(\Vert u\Vert _{X}\le C\).

The regularity of a possible limit of approximate solutions may be proved thanks to the theorem which we recall below [17, Theorem B1].

Theorem 5.5

(Regularity of the limit) Let \(1\le p< \infty \) and \(T>0\). Let B be a Banach space, \((X_m)_{m\in \mathbb {N}}\) be a sequence of Banach spaces included in B and B-limit-included in X (where X is a Banach space included in B). Let \(T>0\) and, for \(m\in \mathbb {N}\), Let \(u_m \in L^{p}(0,T;X_m)\). We assume that the sequence \((\Vert u_m\Vert _{L^{p}(0,T;X_m)})_{m\in \mathbb {N}}\) is bounded and that \(u_m\rightarrow u\) a.e. as \(m\rightarrow \infty \). Then, \(u\in L^{p}(0,T;X)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallouët, T., Herbin, R., Latché, JC. et al. Convergence of the Marker-and-Cell Scheme for the Incompressible Navier–Stokes Equations on Non-uniform Grids. Found Comput Math 18, 249–289 (2018). https://doi.org/10.1007/s10208-016-9338-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-016-9338-4

Keywords

Mathematics Subject Classification

Navigation