Skip to main content

Advertisement

Log in

The origin and fate of mode water in the southern Pacific Ocean

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Understanding the origin and fate of mode and intermediate waters (MW) in the subtropical Pacific Ocean is critical for climate, as MW store and export a large volume of CO2, heat, nutrients and salinity to lower latitudes at depths isolated from the atmosphere. A realistic 4D simulation has been used to track and quantify the MW routes and their property characteristics at the last region of subduction. It also allows us to quantify the water transformation after subduction. The simulation has been compared to available observations using a collocation method that interpolated model data onto observations in time and space. The comprehensive comparisons gave us confidence in the model’s capacity to reproduce MW characteristics. A quantitative Lagrangian analysis was performed on the model output to depict the origin, the fate and the route of MW circulating in the southern Pacific Ocean, selected in the density range of 26.8–27.4 kg m−3. We found 18 Sv of MW were transported northward in patches through the 42° S section, mostly between 200 and 800 m depth. Of this transport, 8 Sv enters the Pacific Ocean in the upper layer south of Tasmania and subducts in the Pacific. The remainder is not ventilated in the Pacific sector: 4 Sv is advected from the Indian Ocean south of Tasmania at intermediate depth and finally 6 Sv is part of an intermediate depth recirculation within the Pacific Ocean. Particles take up to 30 years to travel northward through our domain before crossing the 42° S section. Southward transport branches also exist: 3 Sv flows southward following the eastern New Zealand coast and then exits through Drake Passage. An additional 4 Sv passes southward in the Tasman Sea, following the eastern Tasmanian coast and enters the Indian Ocean south of Tasmania, as part of the Tasman Leakage. Four different formation sites have been identified, where the MW are last ventilated. These formation sites have different water masses with specific salinity ranges. A study on the evolution of the physical characteristics of each of these water masses has been performed. All MW characteristics become more homogeneous at 42° S than they were when they left the mixed layer. This study confirms the homogenisation of mode waters at intermediate depth in the Pacific Ocean as previously revealed in the Indian Ocean using the same methodology. Transformations are shown to be mostly isopycnal in the Tasman Sea and diapycnal farther east.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aoki S, Hariyama M, Mitsudera H, Sasaki H, Sasai Y (2007) Formation regions of subantarctic mode water detected by ofes and Argo profiling floats. Geophys Res Lett 34:10

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Le Sommer J, Beckmann A, Biastoch A, Boning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical atlantic-ocean simulated by a general-circulation model with 2 different mixed-layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Blanke B, Raynaud S (1997) Kinematics of the pacific equatorial undercurrent: an eulerian and lagrangian approach from gcm results. J Phys Oceanogr 27:1038–1053

    Article  Google Scholar 

  • Blanke B, Arhan M, Madec G, Roche S (1999) Warm water paths in the equatorial atlantic as diagnosed with a general circulation model. J Phys Oceanogr 29:2753–2768

    Article  Google Scholar 

  • Blanke B, Arhan M, Speich S, Pailler K (2002) Diagnosing and picturing the north atlantic segment of the global conveyor belt by means of an ocean general circulation model. J Phys Oceanogr 32:1430–1451

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An era40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104

    Article  Google Scholar 

  • Deacon GER (1937) The hydrology of the Southern Ocean. Discov Rep 15(Issue 4.6):1–124

    Google Scholar 

  • Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res Oceans 113:12

    Google Scholar 

  • DRAKKAR_Group, Barnier B, Brodeau L, Le Sommer J, Molines J-M, Penduff T, Theetten S, Treguier A-M, Madec G, Biastoch A, Böning C, Dengg J, Gulev S, Badie R, Chanut J, Garric G, Alderson S, Coward A, de Cuevas B, New A, Haines K, Smith G, Drijfhout S, Hazeleger W, Severijns C, Myers P (2007) Eddy-admitting ocean circulation hindcasts of past decades. Clivar Exch 12(No 3):8–10, No. 42

    Google Scholar 

  • England MH, Godfrey JS, Hirst AC, Tomczak M (1993) The mechanism for Antarctic intermediate water renewal in a world ocean model. J Phys Oceanogr 23:1553–1560

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Google Scholar 

  • Hanawa K, Talley LD (2001) Chap 5.4: mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic Press, New York, pp 373–386

    Chapter  Google Scholar 

  • Herraiz-Borreguero L, Rintoul SR (2011) Subantarctic mode water: distribution and circulation. Ocean Dyn 61:103–126

    Article  Google Scholar 

  • Iudicone D, Rodgers KB, Schopp R, Madec G (2007) An exchange window for the injection of antarctic intermediate water into the south pacific. J Phys Oceanogr 37:31–49

    Article  Google Scholar 

  • Karstensen J, Quadfasel D (2002) Formation of southern hemisphere thermocline waters: water mass conversion and subduction. J Phys Oceanogr 32:3020–3038

    Article  Google Scholar 

  • Klocker A, McDougall T J (2010) Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J Phys Oceanogr 40:1690–1709

    Google Scholar 

  • Koch-Larrouy A, Morrow R, Penduff T, Juza M (2010) Origin and mechanism of subantarctic mode water formation and transformation in the southern Indian ocean. Ocean Dyn SI 60:563–583

    Article  Google Scholar 

  • Lachkar Z, Orr JC, Dutay JC, Delecluse P (2009) On the role of mesoscale eddies in the ventilation of antarctic intermediate water. Deep-Sea Res Part I Oceanogr Res Pap 56:909–925

    Article  Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical report TN-460+STR (vol.105)

  • Lecointre A (2009) Variabilite interannuelle a decenale en atlantique nord et mers nordiques: Etudes conjointe d’observations, simulations numeriques et reanalyses. PhD thesis, Universite Joseph Fourier—Grenoble 1

  • Levitus S, Boyer TP, Conkright ME, O’Brien T, Antonov J, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) Introduction, NOAA Atlas, NESDIS 18. World Ocean Data Base, Washington, D.C

    Google Scholar 

  • Madec G (2008) Nemo ocean engine, Note du pole de Modelisation, Institut Pierre-Simon Laplace (IPSL), France, (vol.27, 300 pp)

  • McCartney MS (1977) A voyage of discovery (Supplement to Deep-Sea Research, George Beacon 70th Anniversary Volume. ed). Pergamon, Oxford, pp 103–119

    Google Scholar 

  • Montegut CD, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109(C12):148–227

    Google Scholar 

  • Penduff T, Juza M, Barnier B (2007a) Assessing the realism of ocean simulations against hydrography and altimetry. Clivar Exch 12(3):11–12, No 42

    Google Scholar 

  • Penduff T, Le Sommer J, Barnier B, Treguier AM, Molines JM, Madec G (2007b) Influence of numerical schemes on current–topography interactions in 1/4° global ocean simulations. Ocean Sci 3:509–524

    Article  Google Scholar 

  • Penduff T, Juza M, Brodeau L, Smith GC, Barnier B, Molines JM, Treguier AM, Madec G (2010) Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci 6:269–284

    Article  Google Scholar 

  • Piola AR, Georgi DT (1982) Circumpolar properties of antarctic intermediate water and sub-antarctic mode water. Deep-Sea Res Part a-Oceanogr Res Pap 29:687–711

    Article  Google Scholar 

  • Qu TD, Gao S, Fukumori I, Fine RA, Lindstrom EJ (2008) Subduction of south pacific waters. Geophys Res Lett 35:L02610

    Article  Google Scholar 

  • Reid JL (1997) On the total geostrophic circulation of the Pacific Ocean: flow patterns, tracers, and transports. Prog Oceanogr 39:263–352

    Article  Google Scholar 

  • Rintoul SR, England MH (2002) Ekman transport dominates local air–sea fluxes in driving variability of subantarctic mode water. J Phys Oceanogr 32:1308–1321

    Article  Google Scholar 

  • Sallée JB, Wienders N, Speer K, Morrow R (2006) Formation of subantarctic mode water in the southeastern indian ocean. Ocean Dyn 56:525–542

    Article  Google Scholar 

  • Sallée JB, Morrow R, Speer K (2008) Eddy heat diffusion and subantarctic mode water formation. Geophys Res Lett 35:7

    Article  Google Scholar 

  • Sallée JB, Speer K, Rintoul S, Wijffels S (2010) Southern Ocean thermocline ventilation. J Phys Oceanogr 40:509–529

    Article  Google Scholar 

  • Santoso A, England MH (2004) Antarctic intermediate water circulation and variability in a coupled climate model. J Phys Oceanogr 34:2160–2179

    Article  Google Scholar 

  • Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60

    Article  Google Scholar 

  • Schneider W, Fukasawa M, Uchida H, Kawano T, Kaneko I, Fuenzalida R (2005) Observed property changes in eastern south pacific antarctic intermediate water. Geophys Res Lett 32:L14602

    Article  Google Scholar 

  • Sloyan BM, Rintoul SR (2001) Circulation, renewal, and modification of antarctic mode and intermediate water. J Phys Oceanogr 31:1005–1030

    Article  Google Scholar 

  • Speer KG (1997) A note on average cross-isopycnal mixing in the north atlantic ocean. Deep-Sea Res Part I-Oceanogr Res Pap 44:1981–1990

    Article  Google Scholar 

  • Speich S, Blanke B, de Vries P, Drijfhout S, Döös K, Ganachaud A, Marsh R (2002) Tasman leakage: a new route in the global ocean conveyor belt. Geophys Res Lett 29(10):L1416

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global hydrography with a high quality Arctic Ocean. J Climate 14:2079–2087

    Article  Google Scholar 

  • Talley LD (1999) Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. In: WaK C (ed) Mechanisms of global climate change at millennial time scales, vol 112. American Geophysical Union, Washington, DC, pp 1–22

    Chapter  Google Scholar 

  • Williams RG, Spall MA, Marshall JC (1995) Does stommel’s mixed layer “demon” work? J Phys Oceanogr 25:3089–3102

    Article  Google Scholar 

  • Wong APS (2005) Subantarctic mode water and antarctic intermediate water in the south indian ocean based on profiling float data 2000–2004. J Mar Res 63:789–812

    Article  Google Scholar 

Download references

Acknowledgments

This work was done as part of Hasson’s Master’s degree at Université Paul Sabatier (Toulouse II), École Nationale de la Météorologie and LEGOS. The project was supported by the CNES via the French TOSCA programme. The model dataset was provided by the DRAKKAR Group. The authors would like to thank the two anonymous reviewers whose constructive comments brought more clarity to our interpretations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Hasson.

Additional information

Responsible Editor: Steve Rintoul

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasson, A., Koch-Larrouy, A., Morrow, R. et al. The origin and fate of mode water in the southern Pacific Ocean. Ocean Dynamics 62, 335–354 (2012). https://doi.org/10.1007/s10236-011-0507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0507-3

Keywords

Navigation