Skip to main content

Advertisement

Log in

Path planning in uncertain flow fields using ensemble method

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adhami-Mirhosseini A, Yazdanpanah MJ, Aguiar AP (2014) Automatic bottom-following for underwater robotic vehicles. Automatica 50(8):2155–2162

    Article  Google Scholar 

  • Aguiar AP, Hespanha JP (2007) Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans Autom Control 52(8):1362–1379

    Article  Google Scholar 

  • Aguiar AP, Hespanha JP, Kokotović PV (2005) Path-Following For nonminimum phase systems removes performance limitations. IEEE Trans Autom Control 50(2):234–239

    Article  Google Scholar 

  • Aguiar AP, Hespanha JP, Kokotović PV (2008) Performance limitations in reference tracking and path following for nonlinear systems. Automatica 44:598–610

    Article  Google Scholar 

  • Aguiar AP, Pascoal AM (2007) Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. Int J Control 80(7):1092–1108

    Article  Google Scholar 

  • Alexanderian A, Winokur J, Sraj I, Srinivasan A, Iskandarani M, Thacker WC, Knio MO (2012) Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput Geosci 16:757–778

    Article  Google Scholar 

  • Bakolas E, Tsiotras P (2012) Feedback navigation in an uncertain flowfield and connections with pursuit strategies. J Guid Control Dynam 35(4):1268–1279

    Article  Google Scholar 

  • Betts JT (1998) Survey of numerical methods for trajectory optimization. J Guid Control Dynam 21(2):193–207

    Article  Google Scholar 

  • Bovio E, Cecchi D, Baralli F (2006) Autonomous underwater vehicles for scientific and naval operations. Annu Rev Control 30(2):117–130

    Article  Google Scholar 

  • Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation and control. CRC Press, New York

    Google Scholar 

  • Bakolas E, Tsiotras P (2010) The Zermelo-Voronoi diagram: a dynamic partition problem. Automatica 46:2059–2067

    Article  Google Scholar 

  • Constantinescu EM, Zavala VM, Rocklin M, Lee S, Anitescu M (2011) A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Trans Power Syst 26(1):431–441

    Article  Google Scholar 

  • Eichhorn M (2015) Optimal routing strategies for autonomous underwater vehicles in time-varying environment. Robot Auton Syst 67:33–43

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367

    Article  Google Scholar 

  • Fainshil L, Margaliot M (2012) A maximum principle for the stability analysis of positive bilinear control systems with applications to positive linear switched systems. SIAM J Control Optim 50(4):2193–2215

    Article  Google Scholar 

  • Garau B, Alvarez A, Oliver G (2005) Path planning of autonomous underwater vehicles incurrent fields with complex spatial variability: an A* approach. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 194–198

  • Ghabcheloo R, Aguiar AP, Pascoal A, Silvestre C, Kaminer I, Hespanha J (2009) Coordinated path-following in the presence of communication losses and time delays. SIAM J Control Optim 48(1):234–265

    Article  Google Scholar 

  • Gómez JV, Lumbier A, Garrido S, Moreno L (2013) Planning robot formations with fast marching square including uncertainty conditions. Robot Auton Syst 61:137–152

    Article  Google Scholar 

  • Höllt T, Hadwiger M, Knio O, Hoteit I (2015) Probability maps for the visualization of assimilation ensemble flow data. In: Proceedings of workshop on visualisation in environmental sciences (EnvirVis). doi:10.2312/envirvis.20151090

  • Hoteit I, Hoar T, Gopalakrishnan G, Collins N, Anderson J, Cornuelle B, Köhl A, Heimbach P (2013) A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn Atmos Oceans 63:1–23

    Article  Google Scholar 

  • Isern-González J, Hernández-Sosa D, Fernández-Perdomo E, Cabrera-Gámez J, Domínguez-Brito AC, Prieto-Maraãón V (2012) Obstacle avoidance in underwater glider path planning. J Phys Agents 6(1):11–20

    Google Scholar 

  • Kaminer I, Pascoal A, Xargay E, Hovakimyan N, Cao C, Dobrokhodov V (2010) Path following for unmanned aerial vehicles using \( \mathcal {L}_{1} \) adaptive augmentation of commercial autopilots. J Guid Control Dynam 33(2):550–564

    Article  Google Scholar 

  • Kothari M, Postlethwaite I (2013) A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. J Intell Robot Syst 71:231–253

    Article  Google Scholar 

  • Lapierre L, Jouvencel B (2008) Robust nonlinear path-following control of an AUV. IEEE J Ocean Eng 33(2):89–102

    Article  Google Scholar 

  • Laschov D, Margaliot M (2013) Minimum-time control of boolean networks. SIAM J Control Optim 51(4):2869–2892

    Article  Google Scholar 

  • Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, New York

    Book  Google Scholar 

  • Lermusiaux PFJ, Chiu CS, Gawarkiewicz GG, Abbot P, Robinson AR, Miller RN, Haley Jr. PJ, Leslie WG, Majumdar SJ, Pang A, Lekien F (2006) Quantifying uncertainties in ocean predictions. Oceanography 19(1):90–103

    Article  Google Scholar 

  • Lermusiaux PFJ, Lolla T, Haley Jr. PJ, Yigit K, Ueckermann MP, Sondergaard T, Leslie WG (2014) Science of autonomy: timeoptimal path planning and adaptive sampling for swarms of ocean vehicles. Chapter 11. In: Curtin T (ed) Springer handbook of ocean engineering: autonomous ocean vehicles, subsystems and control. in press

  • Leutbecher M, Palmer TN (2008) Ensemble forecasting. J Comput Phys 227:3515–3539

    Article  Google Scholar 

  • Liberzon D (2012) Calculus of variations and optimal control theory: a concise introduction. Princeton University Press, Princeton

  • Lifshitz D, Weiss G (2015) Optimal control of a capacitor-type energy storage system. IEEE Trans Autom Control 60(1):216–220

    Article  Google Scholar 

  • Lolla T, Ueckermann MP, Yiğit K, Haley Jr. P J, Lermusiaux PFJ (2012) Path planning in time dependent flow fields using level set methods. In: Proceedings of IEEE international conference on robotics and automation, pp 166–173

  • Lolla T, Lermusiaux PFJ, Ueckermann MP, Haley Jr. P J (2014a) Time-optimal path planning in dynamic flows using level set equations: theory and schemes. Ocean Dyn 64:1373–1397

    Article  Google Scholar 

  • Lolla T, Haley Jr. PJ, Lermusiaux PFJ (2014b) Time-optimal path planning in dynamic flows using level set equations: realistic applications. Ocean Dyn 64:1399–1417

    Article  Google Scholar 

  • Longuski JM, Guzmán JJ, Prussing JE (2014) Optimal control with aerospace applications. Springer, New York

    Book  Google Scholar 

  • Marani G, Choi SK, Yuh J (2009) Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng 36:15–23

    Article  Google Scholar 

  • Marino A, Antonelli G, Aguiar AP, Pascoal A, Chiaverini S (2015) A decentralized strategy for multirobot sampling/patrolling: theory and experiments. IEEE Trans Control Syst Technol 23(1):313–322

    Article  Google Scholar 

  • McKay M, Conover W, Beckman R (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Ohsawa T (2015) Contact geometry of the Pontryagin maximum principle. Automatica 55:1–5

    Article  Google Scholar 

  • Pereira A, Binney J, Hollinger GA, Sukhatme GS (2013) Risk-aware path planning for autonomous underwater vehicles using predictive ocean models. J Field Robot 30(5):741–762

    Article  Google Scholar 

  • Pétrès C, Pailhas Y, Patrón P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE Trans Robot 23(2):331–341

    Article  Google Scholar 

  • Rao AV (2009) Survey of numerical methods for optimal control. Adv Astronaut Sci 135(1):497–528

    Google Scholar 

  • Rao D, Williams SB (2009) Large-scale path planning for underwater gliders in ocean currents. In: Australasian Conference on Robotics and Automation (ACRA)

  • Rhoads B, Mezić I, Poje A (2010) Minimum time feedback control of autonomous underwater vehicles. In: Proceedings of 49th IEEE conference on decision and control, pp 5828–5834

  • Rhoads B, Mezić I, Poje AC (2013) Minimum time heading control of underpowered vehicles in time-varying ocean currents. Ocean Eng 66:12–31

    Article  Google Scholar 

  • Sapsis TP, Lermusiaux PFJ (2009) Dynamically orthogonal field equationsfor continuous stochastic dynamical systems. Physica D 238:2347–2360

    Article  Google Scholar 

  • Sapsis TP, Lermusiaux PFJ (2012) Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Physica D 241:60–76

    Article  Google Scholar 

  • Sethian JA (1999a) Fast marching methods. SIAM Rev 41(2):199–235

    Article  Google Scholar 

  • Sethian JA (1999b) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials Science. Cambridge University Press, Cambridge

  • Sethian JA, Vladimirsky A (2001) Ordered upwind methods for static Hamiton-Jacobi equations. Proc Natl Acad Sci USA 98(20):11069–11074

    Article  Google Scholar 

  • Sethian JA, Vladimirsky A (2003) Ordered upwind methods for static Hamiton-Jacobi equations: theory and algorithm. SIAM J Numer Anal 41(1):325–363

    Article  Google Scholar 

  • Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D 212:271–304

    Article  Google Scholar 

  • Smith RN, Huynh VT (2014) Controlling buoyancy-driven profiling floats for applications in ocean observation. IEEE J Oceanic Eng 39(3):571–586

    Article  Google Scholar 

  • Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE Trans Robot 27(1):89–98

    Article  Google Scholar 

  • Sraj I, Iskandarani M, Srinivasan A, Thacker WC, Winokur J, Alexanderian A, Lee C-Y, Chen SS, Knio OM (2013) Bayesian inference of drag parameters using AXBT data from Typhoon Fanapi. Mon Wea Rev 141:2347–2367

    Article  Google Scholar 

  • Sraj I, Iskandarani M, Thacker C, Srinivasan A, Knio OM (2014a) Drag parameter estimation using gradients and Hessian from a polynomial chaos model surrogate. Mon Wea Rev 142:933– 941

    Article  Google Scholar 

  • Sraj I, Mandli KT, Knio OM, Dawson CN, Hoteit I (2014b) Uncertainty quantification and inference of Mannings friction coefficients using DART buoy data during the Tōhoku tsunami. Ocean Model 83:82–97

    Article  Google Scholar 

  • Sujit PB, Saripalli S, Sousa JB (2011) Unmanned aerial vehicle path following: a survey and analysis of algorithms for fixed-wing unmanned aerial vehicles. IEEE Control Syst Mag 34(1):42–59

    Article  Google Scholar 

  • Techy L, Woolsey CA (2009) Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. J Guid Control Dynam 32(6):1736–1746

    Article  Google Scholar 

  • Wang D, Lermusiaux PFJ, Haley PJ, Eickstedt D, Leslie WG, Schmidt H (2009) Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment. J Mar Syst 78:S393–S407

    Article  Google Scholar 

  • Wolf MT, Blackmore L, Kuwata Y, Newman C (2010) Probabilistic motion planning of balloons in strong, uncertain wind fields. In: Proceedings of 2010 IEEE international conference on robotics and automation, pp 1123–1129

  • Wu PY, Campbell D, Merz T (2011) Multi-objective four-dimensional vehicle motion planning in large dynamic environments. IEEE Trans Syst Man Cybern B Cybern 41(3):621–634

    Article  Google Scholar 

  • Xargay E, Kaminer I, Pascoal A, Hovakimyan N, Dobrokhodov V, Cichella V, Aguiar AP, Ghabcheloo R (2013) Time-critical cooperative path following of multiple unmanned aerial vehicles over time-varying networks. J Guid Control Dynam 36(2):499–516

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Uncertainty Quantification Center at King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar M. Knio.

Additional information

Responsible Editor: Pierre F.J. Lermusiaux

Appendices

Appendix A: Hamiltonian and adjoint equations for the steady, stochastic double gyre flow

For the velocity field in Section 5.1, the Hamiltonian is expressed as:

$$\begin{array}{@{}rcl@{}} H &=&1+p_{1}(-\sin\left( \pi x\right)\cos(\pi y) + V\cos\theta \\ &&- \alpha\xi_{1} \sin(\pi (x+\delta\xi_{2}))\cos(\pi (y+\delta\xi_{3})) ) \\ &&+ p_{2}(\cos\left( \pi x\right)\sin(\pi y) + V\sin\theta\\ &&+\alpha\xi_{1}\cos(\pi (x+\delta\xi_{2}))\sin(\pi (y+\delta\xi_{3}))). \end{array} $$
(32)

and the adjoint equations for the extended system are:

$$\begin{array}{@{}rcl@{}} \dot{p}_{1} = -\frac{\partial H}{\partial{x}} &=& p_{1}\pi\cos(\pi x)\cos(\pi y)\\ &&+ p_{1}\pi\alpha\xi_{1} \cos(\pi (x\,+\,\delta\xi_{2}))\cos(\pi (y+\delta\xi_{3})) \\ &&+ p_{2}\pi \alpha\xi_{1} \sin(\pi (x+\delta\xi_{2}))\sin(\pi (y+\delta\xi_{3}))\\ &&+ p_{2}\pi \sin(\pi x)\sin(\pi y), \\ \dot{p}_{2} = -\frac{\partial H}{\partial{y}} &=& -p_{1}\pi\sin(\pi x)\sin(\pi y)\\ &&- p_{1}\pi\alpha\xi_{1} \sin(\pi (x+\delta\xi_{2}))\sin(\pi (y+\delta\xi_{3})) \\ &&- p_{2}\pi \alpha\xi_{1} \cos(\pi (x\!+\delta\xi_{2}))\cos(\pi (y+\delta\xi_{3}))\\ &&- p_{2}\pi\cos(\pi x)\cos(\pi y). \end{array} $$
(33)

Appendix B: Hamiltonian and adjoint equations for the unsteady, stochastic double gyre flow

For the velocity field in Section 5.2, the Hamiltonian is:

$$\begin{array}{@{}rcl@{}} H &=&1+p_{1}(-\sin\left( \pi f(x, t)\right)\cos(\pi y) +V\cos\theta\\ &&- \alpha\xi_{1} \sin\left( \pi f\left( x+\delta\xi_{2}, t\right)\right)\cos\left( \pi (y+\delta\xi_{3})\right)) \\ &&+ p_{2}\left( \alpha\xi_{1}\cos\left( \pi f\left( x+\delta\xi_{2}, t\right)\right)\sin\left( \pi (y+\delta\xi_{3})\right)\right.\\ &&\times\left.\left( 2a(t)\left( x+\delta\xi_{2}\right) + b(t)\right) + V\sin\theta \right)\\ &&+ p_{2}\cos\left( \pi f(x, t)\right)\sin(\pi y)\left( 2a(t)x + b(t)\right) \end{array} $$
(34)

and the costate equations for the extended system are given by:

$$\begin{array}{@{}rcl@{}} \dot{p}_{1}= -\frac{\partial H}{\partial{x}}&=&p_{1}\pi\cos\left( \pi f(x, t) \right) \cos (\pi y)\left( 2a(t)x + b(t)\right)\\ &&+ p_{1}\pi\alpha\xi_{1} \cos\left( \pi f(x+\delta\xi_{2}, t)\right)\cos(\pi (y+\delta\xi_{3}))\\ &&\times \left( 2a(t)(x+\delta\xi_{2}) + b(t)\right)\\ &&+ p_{2}\pi \sin\left( \pi f(x, t)\right)\sin(\pi y)\left( 2a(t)x + b(t)\right)^{2}\\ &&+ 2p_{2} a(t)\cos \left( \pi f(x, t)\right)\sin (\pi y)\\ &&+ p_{2}\pi \alpha\xi_{1} \sin\left( \pi f(x+\delta\xi_{2}, t)\right)\sin(\pi (y+\delta\xi_{3}))\\ &&\times \left( 2a(t)(x+\delta\xi_{2}) + b(t)\right)^{2}\\ &&+ 2p_{2}\alpha\xi_{1} a(t) \cos\left( \pi f\left( x\,+\,\delta\xi_{2}, t\right)\right)\!\sin\!\left( \pi (y\,+\,\delta\xi_{3})\right),\\ \dot{p}_{2} = -\frac{\partial H}{\partial{y}} &=&-p_{1}\pi\sin\left( \pi f(x, t)\right)\sin(\pi y)\\ &&- p_{1}\pi\alpha\xi_{1} \sin\left( \pi f(x+\delta\xi_{2}, t)\right)\sin(\pi (y+\delta\xi_{3})) \\ &&- p_{2}\pi\cos\left( \pi f(x, t)\right)\cos(\pi y)\left( 2a(t)x + b(t)\right) \\ &&- p_{2}\pi \alpha\xi_{1} \cos\left( \pi f(x+\delta\xi_{2}, t)\right)\cos(\pi (y+\delta\xi_{3}))\\ &&\times \left( 2a(t)\left( x+\delta\xi_{2}\right) + b(t)\right) \end{array} $$
(35)

At the final time, \( t = \bar {t}_{f} \), the velocity components are:

$$\begin{array}{@{}rcl@{}} u_{f} &=& -\sin\left( \pi f(x_{f}, \bar{t}_{f})\right)\cos(\pi y_{f}) \\ &&-\alpha\xi_{1} \sin\left( \pi f\left( x_{f}+\delta\xi_{2}, \bar{t}_{f}\right)\right)\cos\left( \pi (y_{f} + \delta\xi_{3})\right) \end{array} $$

and

$$\begin{array}{@{}rcl@{}} v_{f} &=& \cos\left( \pi f(x_{f}, \bar{t}_{f})\right)\sin(\pi y_{f})\left( 2a(\bar{t}_{f})x_{f} + b(\bar{t}_{f})\right)\\ &&+ \alpha\xi_{1}\cos\left( \pi f\left( x_{f} + \delta\xi_{2}, \bar{t}_{f} \right) \right) \sin \left( \pi (y_{f} + \delta \xi_{3})\right)\\ &&\times\left( 2a(\bar{t}_{f}) \left( x_{f} + \delta\xi_{2}\right) + b(\bar{t}_{f}) \right) . \end{array} $$

Note that in the time-dependent case, the final time t f is not known a priori. For the purpose of backward integration, the travel time at the end point is required to determine current. To overcome this difficulty, we introduce a guess \(\bar {t}_{f} \in [t_{0}, t_{0} + T^{\max }]\) for the real travel time, where T max is the maximum time horizon. The guess for the final time is initialized using \( \bar {t}_{f} = t_{0} + T^{\max }\), and then sequentially reduced, as needed, until a convergent solution is reached.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Le Maître, O.P., Hoteit, I. et al. Path planning in uncertain flow fields using ensemble method. Ocean Dynamics 66, 1231–1251 (2016). https://doi.org/10.1007/s10236-016-0979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0979-2

Keywords

Navigation