Skip to main content
Log in

An ovine in vivo framework for tracheobronchial stent analysis

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Tracheobronchial stents are most commonly used to restore patency to airways stenosed by tumour growth. Currently all tracheobronchial stents are associated with complications such as stent migration, granulation tissue formation, mucous plugging and stent strut fracture. The present work develops a computational framework to evaluate tracheobronchial stent designs in vivo. Pressurised computed tomography is used to create a biomechanical lung model which takes into account the in vivo stress state, global lung deformation and local loading from pressure variation. Stent interaction with the airway is then evaluated for a number of loading conditions including normal breathing, coughing and ventilation. Results of the analysis indicate that three of the major complications associated with tracheobronchial stents can potentially be analysed with this framework, which can be readily applied to the human case. Airway deformation caused by lung motion is shown to have a significant effect on stent mechanical performance, including implications for stent migration, granulation formation and stent fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Mayah A, Moseley J, Velec M et al (2010) Deformable image registration of heterogeneous human lung incorporating the bronchial tree. Med Phys 37:4560–4571. doi:10.1118/1.3471020

    Article  Google Scholar 

  • Al-Mayah A, Moseley J, Velec M, Brock K (2011) Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy. Phys Med Biol 56:4701–13. doi:10.1088/0031-9155/56/15/005

    Article  Google Scholar 

  • Alastrué V, Garía A, Peña E et al (2010) Numerical framework for patient-specific computational modelling of vascular tissue. Int J Numer Method Biomed Eng 26:35–51. doi:10.1002/cnm.1234

    Article  MATH  Google Scholar 

  • Auricchio F, Taylor R, Lubliner J (1997) Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput Methods Appl Mech Eng 146(3):281–312

    Article  MATH  Google Scholar 

  • Bähr A, Wolf E (2012) Domestic animal models for biomedical research. Reprod Domest Anim 47:59–71. doi:10.1111/j.1439-0531.2012.02056.x

    Article  Google Scholar 

  • Bolliger CT, Sutedja TG, Strausz J, Freitag L (2006) Therapeutic bronchoscopy with immediate effect: laser, electrocautery, argon plasma coagulation and stents. Eur Respir J 27:1258–1271. doi:10.1183/09031936.06.00013906

    Article  Google Scholar 

  • Bols J, Degroote J, Trachet B et al (2013) A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J Comput Appl Math 246:10–17. doi:10.1016/j.cam.2012.10.034

    Article  MathSciNet  MATH  Google Scholar 

  • Chaure J, Serrano C, Fernández-Parra R et al (2016) On studying the interaction between different stent models and rabbit tracheal tissue: numerical, endoscopic and histological comparison. Ann Biomed Eng 44:368–381. doi:10.1007/s10439-015-1504-3

    Article  Google Scholar 

  • Chung F-T, Chen H-C, Chou C-L et al (2011) An outcome analysis of self-expandable metallic stents in central airway obstruction: a cohort study. J Cardiothorac Surg 6:46. doi:10.1186/1749-8090-6-46

    Article  Google Scholar 

  • Chung FT, Lin SM, Chen HC et al (2008) Factors leading to tracheobronchial self-expandable metallic stent fracture. J Thorac Cardiovasc Surg 136:1328–1335. doi:10.1016/j.jtcvs.2008.05.039

    Article  Google Scholar 

  • Conway C, Sharif F, McGarry JP, McHugh PE (2012) A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc Eng Technol 3:374–387. doi:10.1007/s13239-012-0104-8

    Article  Google Scholar 

  • Crum WR, Hartkens T, Hill DLG (2004) Non-rigid image registration: theory and practice. Br J Radiol 77:S140–S153. doi:10.1259/bjr/25329214

    Article  Google Scholar 

  • Dooms C, De Keukeleire T, Janssens A, Carron K (2009) Performance of fully covered self-expanding metallic stents in benign airway strictures. Respiration 77:420–6. doi:10.1159/000203364

    Article  Google Scholar 

  • Eom J, Xu XG, De S, Shi C (2010) Predictive modeling of lung motion over the entire respiratory cycle using measured pressure-volume data, 4DCT images, and finite-element analysis. Med Phys 37:4389. doi:10.1118/1.3455276

    Article  Google Scholar 

  • Fernández-Bussy S, Majid A, Caviedes I et al (2011) Treatment of airway complications following lung transplantation. Arch Bronconeumol (English Ed) 47:128–133. doi:10.1016/S1579-2129(11)70031-3

    Article  Google Scholar 

  • Freitag L (2010) Airway stents. In: Interventional pulmonology. European Respiratory Society Journals Ltd, Sheffield, pp 190–217

  • Fuerst B, Mansi T, Carnis F et al (2015) Patient-specific biomechanical model for the prediction of lung motion from 4-D CT images. IEEE Trans Med Imaging 34:599–607. doi:10.1109/TMI.2014.2363611

    Article  Google Scholar 

  • García a, Peña E, Martínez M a (2012) Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J Mech Behav Biomed Mater 10:166–175. doi:10.1016/j.jmbbm.2012.02.006

    Article  Google Scholar 

  • Gastaldi D, Morlacchi S, Nichetti R et al (2010) Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: Effects of stent positioning. Biomech Model Mechanobiol 9:551–561. doi:10.1007/s10237-010-0196-8

    Article  Google Scholar 

  • Gee MW, Reeps C, Eckstein HH, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42:1732–1739. doi:10.1016/j.jbiomech.2009.04.016

    Article  Google Scholar 

  • Gildea TR, Downie G, Eapen G et al (2008) A prospective multicenter trial of a self-expanding hybrid stent in malignant airway obstruction. J Bronchol 15:221–224. doi:10.1097/LBR.0b013e31818859b9

    Article  Google Scholar 

  • Gökgöl C, Diehm N, Nezami FR, Büchler P (2015) Nitinol stent oversizing in patients undergoing popliteal artery revascularization: a finite element study. Ann Biomed Eng. doi:10.1007/s10439-015-1358-8

  • Hautmann H, Rieger J, Huber RM, Pfeifer KJ (1999) Elastic deformation properties of implanted endobronchial wire stents in benign and malignant bronchial disease: A radiographic in vivo evaluation. Cardiovasc Interv Radiol 22:103–108

    Article  Google Scholar 

  • Hoffman EA (1985) Effect of body orientation on regional lung expansion: a computed tomographic approach. J Appl Physiol 59:468–80

    Google Scholar 

  • Hu H-C, Liu Y-H, Wu Y-C et al (2011) Granulation tissue formation following Dumon airway stenting: the influence of stent diameter. Thorac Cardiovasc Surg 59:163–168

    Article  Google Scholar 

  • Hurewitz AN, Sidhu U, Bergofsky EH, Chanana AD (1984) How alterations in pleural pressure influence esophageal pressure. J Appl Physiol 56:1162–1169

    Google Scholar 

  • Ibrahim G, Rona A, Hainsworth SV (2015) Modeling the nonlinear motion of the rat central airways. J Biomech Eng 138:11007. doi:10.1115/1.4032051

    Article  Google Scholar 

  • Jeong BH, Um SW, Suh GY et al (2012) Results of interventional bronchoscopy in the management of postoperative tracheobronchial stenosis. J Thorac Cardiovasc Surg 144:217–222. doi:10.1016/j.jtcvs.2012.03.077

    Article  Google Scholar 

  • Kamm RD (1999) Airway wall mechanics. Annu Rev Biomed Eng 1:47–72. doi:10.1146/annurev.bioeng.1.1.47

    Article  Google Scholar 

  • Lai-Fook SJ (2004) Pleural mechanics and fluid exchange. Physiol Rev 84:385–410. doi:10.1152/physrev.00026.2003

    Article  Google Scholar 

  • Lee P, Kupeli E, Mehta AC (2010) Airway stents. Clin Chest Med 31:141–150. doi:10.1016/j.ccm.2009.08.002

    Article  Google Scholar 

  • Lu J, Zhou X, Raghavan ML (2007) Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech 40:693–696. doi:10.1016/j.jbiomech.2006.01.015

    Article  Google Scholar 

  • Malvè M, del Palomar AP, López-Villalobos JL et al (2010) FSI analysis of the coughing mechanism in a human trachea. Ann Biomed Eng 38:1556–1565. doi:10.1007/s10439-010-9951-3

    Article  Google Scholar 

  • Malvè M, Del Palomar AP, Chandra S et al (2011a) FSI analysis of a human trachea before and after prosthesis implantation. J Biomech Eng 133:71003. doi:10.1115/1.4004315

    Article  Google Scholar 

  • Malvè M, Pérez del Palomar a, Mena a et al (2011b) Numerical modeling of a human stented trachea under different stent designs. Int Commun Heat Mass Transf 38:855–862. doi:10.1016/j.icheatmasstransfer.2011.04.012

  • Malvè M, Pérez del Palomar a, Trabelsi O et al (2011c) Modeling of the fluid structure interaction of a human trachea under different ventilation conditions. Int Commun Heat Mass Transf 38:10–15. doi:10.1016/j.icheatmasstransfer.2010.09.010

    Article  Google Scholar 

  • Malvè M, Pérez del Palomar a, Chandra S et al (2011d) FSI Analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions. J Biomech Eng 133:21001. doi:10.1115/1.4003130

    Article  Google Scholar 

  • Malvè M, Serrano C, Peña E et al (2014) Modelling the air mass transfer in a healthy and a stented rabbit trachea: CT-images, computer simulations and experimental study. Int Commun Heat Mass Transf 53:1–8. doi:10.1016/j.icheatmasstransfer.2014.02.001

    Article  Google Scholar 

  • Marchese R, Poidomani G, Paglino G et al (2015) Fully covered self-expandable metal stent in tracheobronchial disorders: clinical experience. Respiration 89:49–56. doi:10.1159/000368614

    Article  Google Scholar 

  • McClelland JR, Hawkes DJ, Schaeffter T, King AP (2013) Respiratory motion models: a review. Med Image Anal 17:19–42. doi:10.1016/j.media.2012.09.005

    Article  Google Scholar 

  • McCool FD (2006) Global physiology and pathophysiology of cough: ACCP evidence-based clinical practice guidelines. Chest 129:48S–53S. doi:10.1378/chest.129.1_suppl.48S

    Article  Google Scholar 

  • McGrath DJ, O’Brien B, Bruzzi M, McHugh PE (2014) Nitinol stent design—understanding axial buckling. J Mech Behav Biomed Mater 40:252–263. doi:10.1016/j.jmbbm.2014.08.029

    Article  Google Scholar 

  • McGrath DJ, O’Brien B, Bruzzi M et al (2016) Evaluation of cover effects on bare stent mechanical response. J Mech Behav Biomed Mater 61:567–580. doi:10.1016/j.jmbbm.2016.04.023

    Article  Google Scholar 

  • Moreno F, Lyons HA (1961) Effect of body posture on lung volumes. J Appl Physiol 16:27–9

    Google Scholar 

  • Nestola MGC, Faggiano E, Vergara C et al (2017) Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput Methods Biomech Biomed Eng 20:171–181. doi:10.1080/10255842.2016.1207171

    Article  Google Scholar 

  • Ní Ghriallais R, Bruzzi M (2014) A computational analysis of the deformation of the femoropopliteal artery with stenting. J Biomech Eng 136:71003. doi:10.1115/1.4027329

    Article  Google Scholar 

  • Ost DE, Shah AM, Lei X et al (2012) Respiratory infections increase the risk of granulation tissue formation following airway stenting in patients with malignant airway obstruction. Chest 141:1473–81. doi:10.1378/chest.11-2005

    Article  Google Scholar 

  • Park J-H, Kim PH, Shin JH et al (2016) Removal of retrievable self-expandable metallic tracheobronchial stents: an 18-year experience in a single center. Cardiovasc Interv Radiol. doi:10.1007/s00270-016-1420-4

  • Petrini L, Trotta A, Dordoni E et al (2016) A computational approach for the prediction of fatigue behaviour in peripheral stents: application to a clinical case. Ann Biomed Eng 44:536–547. doi:10.1007/s10439-015-1472-7

    Article  Google Scholar 

  • Prasad A, Xiao N, Gong XY et al (2013) A computational framework for investigating the positional stability of aortic endografts. Biomech Model Mechanobiol 12:869–887. doi:10.1007/s10237-012-0450-3

    Article  Google Scholar 

  • Rausch SMK, Martin C, Bornemann PB et al (2011) Material model of lung parenchyma based on living precision-cut lung slice testing. J Mech Behav Biomed Mater 4:583–92. doi:10.1016/j.jmbbm.2011.01.006

    Article  Google Scholar 

  • Razi SS, Lebovics RS, Schwartz G et al (2010) Timely airway stenting improves survival in patients with malignant central airway obstruction. Ann Thorac Surg 90:1088–1093. doi:10.1016/j.athoracsur.2010.06.093

    Article  Google Scholar 

  • Saad CP, Murthy S, Krizmanich G, Mehta AC (2003) Self-expandable metallic airway stents and flexible bronchoscopy*. Chest 124:1993–1999. doi:10.1378/chest.124.5.1993

    Article  Google Scholar 

  • Scheerlinck JPY, Snibson KJ, Bowles VM, Sutton P (2008) Biomedical applications of sheep models: from asthma to vaccines. Trends Biotechnol 26:259–266. doi:10.1016/j.tibtech.2008.02.002

    Article  Google Scholar 

  • Schmäl F, Fegeler W, Terpe HJ et al (2003) Bacteria and granulation tissue associated with Montgomery T-tubes. Laryngoscope 113:1394–1400. doi:10.1097/00005537-200308000-00024

    Article  Google Scholar 

  • Si H, Gärtner K (2015) Meshing piecewise linear complexes by constrained delaunay tetrahedralizations. In: Proceedings of the 14th international meshing roundtable. Springer, Berlin, pp 147–163

  • Stoeckel D, Pelton A, Duerig T (2004) Self-expanding nitinol stents: material and design considerations. Eur Radiol 14:292–301. doi:10.1007/s00330-003-2022-5

    Article  Google Scholar 

  • Tawhai MH, Nash MP, Lin C-L, Hoffman E a (2009) Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol 107:912–920. doi:10.1152/japplphysiol.00324.2009

    Article  Google Scholar 

  • Tehrani JN, Yang Y, Werner R et al (2015) Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters. Phys Med Biol 60:8833–8849. doi:10.1088/0031-9155/60/22/8833

    Article  Google Scholar 

  • Thiebes AL, Kelly N, Sweeney CA et al (2016) PulmoStent: in vitro to in vivo evaluation of a tissue engineered endobronchial stent. Ann Biomed Eng. doi:10.1007/s10439-016-1737-9

  • Trabelsi O, Malve M, Mena Tobar A, Doblare M (2015) Simulation of swallowing dysfunction and mechanical ventilation after a Montgomery T-tube insertion. Comput Methods Biomech Biomed Eng 18:1596–1605. doi:10.1080/10255842.2014.930448

    Article  Google Scholar 

  • Trabelsi O, Pérez del Palomar A, Mena Tobar A et al (2011) FE simulation of human trachea swallowing movement before and after the implantation of an endoprothesis. Appl Math Model 35:4902–4912. doi:10.1016/j.apm.2011.03.041

    Article  MathSciNet  MATH  Google Scholar 

  • Villard P-F, Beuve M, Shariat B et al (2005) Simulation of lung behaviour with finite elements: influence of bio-mechanical parameters. In: Third international conference on medical information visualisation-biomedical visualisation. IEEE, pp 9–14

  • Wall WA, Rabczuk T (2008) Fluid-structure interaction in lower airways of CT-based lung geometries. Int J Numer Methods Fluids 57:653–675. doi:10.1002/fld.1763

    Article  MathSciNet  MATH  Google Scholar 

  • Werner R, Ehrhardt J, Schmidt R, Handels H (2009) Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med Phys 36:1500. doi:10.1118/1.3101820

    Article  Google Scholar 

  • West JB (2012) Respiratory physiology: the essentials. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Yin Y, Choi J, Hoffman EA et al (2013) A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. J Comput Phys 244:168–192. doi:10.1016/j.jcp.2012.12.007

    Article  MathSciNet  Google Scholar 

  • Zeng YJ, Yager D, Fung YC (1987) Measurement of the mechanical properties of the human lung tissue. J Biomech Eng 109:169–174

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement \(\hbox {n} {^{\circ }}\) NMP3-SL-2012-280915) PulmoStent. Funding from the College of Engineering and Informatics at NUI Galway through a College Scholarship is also acknowledged, along with funding support provided by the Structured Ph.D. Programme in Biomedical Engineering and Regenerative Medicine (BMERM). Funded under the Programme for Research in Third-Level Institutions (PRTLI) Cycle 5 (Strand 2) and co-funded under the European Regional Development Fund (ERDF). The authors wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donnacha J. McGrath or Peter E. McHugh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGrath, D.J., Thiebes, A.L., Cornelissen, C.G. et al. An ovine in vivo framework for tracheobronchial stent analysis. Biomech Model Mechanobiol 16, 1535–1553 (2017). https://doi.org/10.1007/s10237-017-0904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0904-8

Keywords

Navigation