Skip to main content
Log in

Fatigue exhaustion of the mitral valve tissue

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Sudden failure and rupture of the tissue is a rare but serious short-term complication after the mitral valve surgical repair. Excessive cyclic loading on the suture line of the repair can progressively damage the surrounding tissue and finally cause tissue rupture. Moreover, mechanical over-tension, which occurs in a diseased mitral valve, gradually leads to tissue floppiness, mitral annular dilation, and leaflet rupture. In this work, the rupture mechanics of mitral valve is studied by characterizing the fracture toughness exhaustion of healthy tissue. Results of this study show that fracture toughness of the posterior mitral valve is lower than its anterior counterpart, indicating that posterior tissue is more prone to failure. Moreover, the decrease in fracture toughness by increasing the number of fatigue cycles shows that excessive mechanical loading leads to progressive failure and rupture of mitral valve tissue within a damage accumulative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Mitral annuloplasty, the main repair technique of MR, consists of suturing a prosthetic ring to the annulus and shrinking the valve orifice to the normal or undersized dimensions.

  2. Olymel Corp., Saint-Esprit, QC, Canada.

  3. Needle insertion can also be considered as a practical technique for measuring fracture toughness in soft biological tissue (Azar and Hayward 2008).

  4. The results of the control group, not subjected to fatigue loading, can be found in Table 1.

References

  • Agricola E, Oppizzi M, Maisano F, De Bonis M, Schinkel AF, Torracca L, Margonato A, Melisurgo G, Alfieri O (2004) Echocardiographic classification of chronic ischemic mitral regurgitation caused by restricted motion according to tethering pattern. Circulation 5:326

    Google Scholar 

  • Alfieri O, De Bonis M (2012) Repair options for mitral regurgitation. Interv Cardiol (London) 7(2):131

    Google Scholar 

  • Amini R, Eckert CE, Koomalsingh K, McGarvey J, Minakawa M, Gorman JH, Gorman RC, Sacks MS (2012) On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann Biomed Eng 40(7):1455

    Article  Google Scholar 

  • Atkins A, Mai Y (1979) Guillotining of materials. J Mater Sci 14(11):2747

    Article  Google Scholar 

  • Atkins A, Xu X, Jeronimidis G (2004) Cutting, by ’pressing and slicing’, of thin floppy slices of materials illustrated by experiments on cheddar cheese and salami. J Mater Sci 39(8):2761

    Article  Google Scholar 

  • Azar T, Hayward V (2008) Estimation of the fracture toughness of soft tissue from needle insertion. In: Bello F, Edwards E (eds) Biomedical simulation. Lecture notes in computer science, vol 5104. Springer, Phoenix, AZ, pp 166–175

  • Bellucci G, Seedhom BB (2002) Tensile fatigue behavior of articular cartilage. Biorheology 39(1–2):193

    Google Scholar 

  • Boron W, Boulpaen E (2005) Medical physiology: a cellular and molecular approach. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Chanthasopeephan T, Desai J, Lau A (2006) Determining fracture characteristics in scalpel cutting of soft tissue. In: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, BioRob 2006, pp 899–904

  • Chin-Purcell MV, Lewis JL (1996) Fracture of articular cartilage. J Biomech Eng 118:545556

    Article  Google Scholar 

  • Chow MJ, Zhang Y (2011) Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J Surg Res 171(2):434

    Article  Google Scholar 

  • Chu B, Gaillard E, Mongrain R, Reiter S, Tardif JK (2012) Characterization of fracture toughness exhaustion in pig aorta. J Mech Behav Biomed Mater 17:126

    Article  Google Scholar 

  • Cohen R, Zimber M, Hansbrough JF, Fung YC, Debes J, Skalak R (1991) Tear strength properties of a novel cultured dermal tissue model. Ann Biomed Eng 19(5):600–601

    Google Scholar 

  • Darvell B, Lee P, Yuen T, Lucas P (1996) A portable fracture toughness tester for biological materials. Meas Sci Technol 7(6):954

    Article  Google Scholar 

  • De Bonis M, Maisano F, La Canna G, Alfieri O (2012) Treatment and management of mitral regurgitation. Nat Rev Cardiol 9:133

    Article  Google Scholar 

  • Fung YC, Liu SQ (1991) Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J Appl Physiol 70(6):2455

    Article  Google Scholar 

  • Gilpin C (2005) Cyclic loading of porcine coronary arteries. Master’s Thesis, Georgia Institute of Technology, Atlanta

  • Hueb AC, Jatene FB, Moreira LFP, Pomerantzeff PM, Kallás E, De Oliveira SA (2002) Ventricular remodeling and mitral valve modifications in dilated cardiomyopathy: new insights from anatomic study. J Thorac Cardiovasc Surg 124:1216

    Article  Google Scholar 

  • Kunzelman KS, Cochran RP (1992) Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg 7(1):71

    Article  Google Scholar 

  • Kunzelman KS, Quick DW, Cochran RP (1998) Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann Thorac Surg 66(6):S198

    Article  Google Scholar 

  • Lake G (2003) Fracture mechanics and its application to failure in rubber articles. Rubber Chem Technol 76(3):567

    Article  Google Scholar 

  • Lee CH, Rabbah JP, Yoganathan AP, Gorman RC, Gorman JH, Sacks MS (2015) On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomech Model Mechanobiol 14(6):1281

    Article  Google Scholar 

  • Lemaître J (1996) A course on damage mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Liao J, Yang L, Grashow J, Sacks M (2007) The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J Biomech Eng 129:78

    Article  Google Scholar 

  • May-Newman K, Yin FC (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120(1):38

    Article  Google Scholar 

  • McCarthy C, Hussey M, Gilchrist M (2007) On the sharpness of straight edge blades in cutting soft solids: part I—indentation experiments. Eng Fract Mech 74(14):2205

    Article  Google Scholar 

  • McCormack T, Mansour JM (1997) Reduction in tensile strength of cartilage precedes surface damage under repeated compressive loading in vitro. J Biomech 31(1):55

    Article  Google Scholar 

  • Oyen-Tiesma M, Cook R (2001) Technique for estimating fracture resistance of cultured neocartilage. J Mater Sci Mater Med 12(4):327

    Article  Google Scholar 

  • Padala M, Hutchison RA, Croft LR, Jimenez JH, Gorman RC, Gorman JH III, Sacks MS, Yoganathan AP (2009) Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann Thorac Surg 88(5):1499

    Article  Google Scholar 

  • Paris PC, Gomez MP, Anderson WE (1961) A rational analytic theory of fatigue. Trend Eng 13(1):9

    Google Scholar 

  • Pedersen L, Zhao J, Yang J, Thomsen P, Gregersen H, Hasenkam J, Smerup M, Pedersen H, Olsen L (2007) Increased expression of endothelin B receptor in static stretch exposed porcine mitral valve leaflets. Res Vet Sci 82(2):232

    Article  Google Scholar 

  • Pereira B, Lucas P, Swee-Hin T (1997) Ranking the fracture toughness of thin mammalian soft tissues using the scissors cutting test. J Biomech 30(1):91

    Article  Google Scholar 

  • Pollock RG, Wang VM, Bucchieri JS, Cohen NP, Huang CY, Pawluk RJ, Flatow EL, Bigliani LU, Mow VC (2000) Effects of repetitive subfailure strains on the mechanical behavior of the inferior glenohumeral ligament. J Shoulder Elb Surg 9(5):427

    Article  Google Scholar 

  • Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Methods Eng 71:987

    Article  MathSciNet  MATH  Google Scholar 

  • Purslow PP (1985a) The physical basis of meat texture: observations on the fracture behaviour of cooked bovine M. Semitendinosus. Meat Sci 12(1):39

    Article  Google Scholar 

  • Purslow P (1983b) Measurement of the fracture toughness of extensible connective tissues. J Mater Sci 18(12):3591

    Article  Google Scholar 

  • Purslow PP (1983c) Positional variations in fracture toughness stiffness and strength of descending thoracic pig aorta. J Biomech 16(11):947

    Article  Google Scholar 

  • Quick DW, Kunzelman KS, Kneebone JM, Cochran RP (1997) Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J (American Society for Artificial Internal Organs: 1992) 43(3):181

    Google Scholar 

  • Rausch MK, Bothe W, Vitting JEK, Swanson JC, Ingels NB, Miller DC, Kuhl E (2011) Characterization of mitral valve annular dynamics in the beating heart. Ann Biomed Eng 39(6):1690

    Article  Google Scholar 

  • Rausch MK, Tibayan FA, Ingels NB, Miller DC, Kuhl E (2013) Mechanics of the mitral annulus in chronic ischemic cardiomyopathy. Ann Biomed Eng 41(10):2171

    Article  Google Scholar 

  • Rego BV, Wells SM, Lee CH, Sacks MS (2016) Mitral valve leaflet remodelling during pregnancy: insights into cell-mediated recovery of tissue homeostasis. J R Soc Interface 13(125):20160709

    Article  Google Scholar 

  • Rudolph V, Baldus S (2013) Mitral regurgitation in patients with heart failure. Herz 38:136

    Article  Google Scholar 

  • Schechtman H, Bader D (1997) In vitro fatigue of human tendons. J Biomech 30(8):829

    Article  Google Scholar 

  • Schofield RS, Schofield PM (2010) The current status of percutaneous mitral valve repair. J Saudi Heart Assoc 22:111

    Article  Google Scholar 

  • Sellaro TL, Hildebrand D, Lu Q, Vyavahare N, Scott M, Sacks MS (2007) Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. J Biomed Mater Res Part A 80A(1):194

    Article  Google Scholar 

  • Shahmansouri N, Cartier R, Mongrain R (2015) Characterization of the toughness and elastic properties of fresh and cryopreserved arteries. J Biomech 48(10):2205

    Article  Google Scholar 

  • Shahmansouri N, Alreshidan M, Emmott A, Lachapelle K, Cartier R, Leask RL, Mongrain R (2016) Evaluating ascending aortic aneurysm tissue toughness: dependence on collagen and elastin contents. J Mech Behav Biomed Mater 64:262

    Article  Google Scholar 

  • Sonoda M, Harwood FL, Amiel ME, Moriya H, Temple M, Chang DG, Lottman LM, Sah RL, Amiel D (2000) The effects of hyaluronan on tissue healing after meniscus injury and repair in a rabbit model. Am J Sports Med 28(1):90

    Article  Google Scholar 

  • Sun W, Sacks M, Fulchiero G, Lovekamp J, Vyavahare N, Scott M (2004) Wei Sun and Michael Sacks and Gregory Fulchiero and Joshua Lovekamp and Naren Vyavahare and Michael Scott. J Biomed Mater Res Part A 69A(4):658

    Article  Google Scholar 

  • Szczesniak AS, Torgeson KW (1965) Methods of meat texture measurement viewed from the background of factors affecting tenderness. Adv Food Res 14:33

    Article  Google Scholar 

  • Taylor D, Hazenberg J, Lee T (2003) The cellular transducer in damage-stimulated bone remodelling: a theoretical investigation using fracture mechanics. J Theor Biol 225(1):65

    Article  Google Scholar 

  • Taylor D, OMara N, Ryan E, Takaza M, Simms C (2012) The fracture toughness of soft tissues. J Mech Behav Biomed Mater 6:139

    Article  Google Scholar 

  • Tops F, Kapadia S, Tuzcu E, Vahanian A, Alfieri O, Webb J, Bax J (2008) Percutaneous valve procedures: an update. Curr Probl Cardiol 33(8):417

    Article  Google Scholar 

  • Trichon BH, O’Connor CM (2002) Secondary mitral and tricuspid regurgitation accompanying left ventricular systolic dysfunction: is it important, and how is it treated? Am Heart J 144(3):373

    Article  Google Scholar 

  • Wells SM, Sacks MS (2002) Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading. Biomaterials 23(11):2389

    Article  Google Scholar 

  • Wells SM, Sellaro T, Sacks MS (2005) Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials 26(15):2611

    Article  Google Scholar 

  • Yeh OC, Keaveny TM (2001) Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J Orthop Res 19(6):1001

    Article  Google Scholar 

  • Yuen J, Copeland J (1979) Fatigue crack growth behavior of stainless steel Type 316 plate and 16-8-2 weldments in air and high-carbon liquid sodium. J Eng Mater Technol 101(3):214

    Article  Google Scholar 

  • Zhang W, Sacks MS (2017) Modeling the response of exogenously crosslinked tissue to cyclic loading: the effects of permanent set. J Mech Behav Biomed Mater 75:336

    Article  Google Scholar 

  • Zhang W, Ayoub S, Liao J, Sacks MS (2016) A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets. Acta Biomater 32:238

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Mr. Boby Chu for the design and fabrication of the fatigue and the fracture toughness devices and Dr. Amir K. Miri Ramsheh for helping us to set up and to calibrate the devices. We also thank NSERC, Canada’s Natural Sciences and Engineering Research Council, and FRQNT, Quebec’s Fonds de recherche du Québec Nature et Technologies, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Javid.

Ethics declarations

Conflict of interest

There is no conflict of interest for any author related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, F., Shahmansouri, N., Angeles, J. et al. Fatigue exhaustion of the mitral valve tissue. Biomech Model Mechanobiol 18, 89–97 (2019). https://doi.org/10.1007/s10237-018-1070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1070-3

Keywords

Navigation