Skip to main content
Log in

Community of arbuscular mycorrhizal fungi in drought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda

  • Full Paper
  • Published:
Mycoscience

Abstract

The community structure of arbuscular mycorrhizal (AM) fungi in the roots of drought-resistant trees, Moringa spp., was examined in semiarid regions in Madagascar and Uganda. Root samples were collected from 8 individuals of M. hildebrandtii and 2 individuals of M. drouhardii in Madagascar and from 21 individuals of M. oleifera in Uganda. Total DNA was extracted from the root samples, and partial nSSU rDNA of AM fungi was amplified using a universal eukaryotic primer NS31 and an AM fungalspecific primer AM1. The PCR products were cloned and divided by restriction fragment length polymorphism (RFLP) analysis with HinfI and RsaI. Some representatives in each RFLP types were sequenced, and a neighbor-joining phylogenetic analysis was conducted for the obtained sequences with analogous sequences of AM fungi. The RFLP and phylogenetic analyses showed that AM fungi closely related to Glomus intraradices or G. sinuosum were detected in many samples. The AM fungal groups frequently detected in the Moringa spp. might be widely distributed species in semiarid environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Busse MD, Ellis JR (1985) Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Can J Bot 63:2290–2294

    Google Scholar 

  • Calvente R, Cano C, Ferrol N, Azcon-Aguilar C, Barea JM (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19

    Article  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol Ecol 36:203–209

    Article  PubMed  CAS  Google Scholar 

  • Davies FT, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P-concentrationresponse in gas exchange and water relations. Physiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • Douhan GW, Petersen C, Bledsoe CS, Rizzo DM (2005) Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: host specificity or non-specific amplification? Mycorrhiza 15:365–372

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature (Lond) 394:431

    Article  CAS  Google Scholar 

  • Helgason T, Fitter AH, Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonizing Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Mol Ecol 8:659–666

    Article  CAS  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Jahn SAA (1988) Using Moringa seeds as coagulants in developing countries. J Am Water Works Assoc 80:43–50

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Makkar HPS, Becker K (1997) Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agric Sci 128:311–322

    Article  Google Scholar 

  • Moora M, Öpik M, Sen R, Zobel M (2004) Native arbuscular mycorrhizal fungal communities differently influence the seedling performance of rare and common Pulsatilla species. Funct Ecol 18:554–562

    Article  Google Scholar 

  • Munkvold L, Kjöller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Arbuscular mycorrhizal fungal composition in semi-arid soils of Western Ghats, southern India. Curr Sci 82:624–628

    Google Scholar 

  • Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K (2006) Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17:11–24

    Article  PubMed  CAS  Google Scholar 

  • Nelson CE, Safir GR (1982) Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta 154:407–413

    Article  Google Scholar 

  • Oba H, Shinozaki N, Oyaizu H, Tawaraya K, Wagatsuma T, Barraquio WL, Saito M (2004) Arbuscular mycorrhizal fungal communities associated with some pioneer plants in the lahar area of Mt. Pinaturbo, Philippines. Soil Sci Plant Nutr 50:1195–1203

    Google Scholar 

  • Odee D (1988) Forest biotechnology research in drylands of Kenya: the development of Moringa species. Dryland Biodivers 2:7–8

    Google Scholar 

  • Olson ME, Carlquist S (2001) Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa (Moringaceae). Bot J Linn Soc 135:315–348

    Article  Google Scholar 

  • Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581–593

    Article  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of rootcolonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Page RDM (1996) An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Panwar J, Vyas A (2002) AM fungi: a biological approach towards conservation of endangered plants in Thar desert, India. Curr Sci 82:576–578

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Simon LM, Lalonde TD, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonising roots. Appl Environ Microbiol 58:291–295

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Stahl PD, Smith WK (1984) Effects of different geographic isolates of Glomus on the water relations of Agropyron smithii. Mycologia 76:261–267

    Article  Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1997) Effect of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maize. Can J Bot 75:1582–1591

    Article  CAS  Google Scholar 

  • Stutz JC, Copeman R, Martin CA, Morton JB (2000) Pattern of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. Can J Bot 78:237–245

    Article  Google Scholar 

  • Tao L, Zhiwei Z (2005) Arbuscular mycorrhizas in a hot and arid ecosystem in southwest China. Appl Soil Ecol 29:135–141

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequencing weighting, position sequence gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Truog E (1930) The determination of the readily available phosphorus of soils. J Am Soc Agron 22:874–882

    CAS  Google Scholar 

  • Turner NC, Kramer PJ (1980) Adaptation of plants to water and high temperature stress. Wiley, New York

    Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Weising K, Nybom H, Wolff K, Meyer W (1995) DNA fingerprinting in plants and fungi. CRC Press, Florida

    Google Scholar 

  • Yamato M, Iwase K (2005) Community analysis of arbuscular mycorrhizal fungi in a warm-temperate deciduous broad-leaved forest and introduction of the fungal community into the seedlings of indigenous woody plants. Mycoscience 46:334–342

    Article  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-stressed conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Yamato.

About this article

Cite this article

Yamato, M., Ikeda, S. & Iwase, K. Community of arbuscular mycorrhizal fungi in drought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience 50, 100–105 (2009). https://doi.org/10.1007/s10267-008-0459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-008-0459-8

Key words

Navigation