Skip to main content

Advertisement

Log in

Optimization of 3D building models by GPS measurements

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Recently, 3D building models have become an important aid to many positioning methods such as LiDAR and GPS positioning. Creating an accurate 3D building model requires accurate 2D building boundaries. We propose a method to correct the horizontal location errors of the 3D building model using GPS measurements. In an urban canyon, several GPS signals are reflected by buildings, and these reflections are potentially capable of indicating the correct position of the buildings. Starting with a raw 3D building model, we apply a signal ray tracing method to track the simulated reflection path of the GPS signal. Theoretically, the length of observed reflection path, which is known as the non-line-of-sight pseudorange, and the length of simulated reflection path should be similar. However, if the 3D map is not accurate, a difference between the pseudorange and simulated range is found. Using this difference, the proposed method estimates the true position of the wall of the 3D map. Results show that the proposed method successfully corrects the position of the wall of the raw 3D map and achieves sub-meter accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Betaille D, Peyret F, Ortiz M, Miquel S, Fontenay L (2013) A new modeling based on urban trenches to improve GNSS positioning quality of service in cities. IEEE Intell Transp Syst Mag 5(3):59–70. doi:10.1109/MITS.2013.2263460

    Article  Google Scholar 

  • Eunyoung K, Medioni G (2010) Dense structure inference for object classification in aerial LIDAR dataset. In: 20th International conference on pattern recognition (ICPR), pp 3049–3052. doi:10.1109/ICPR.2010.747

  • Groves PD (2011) Shadow matching: a new GNSS positioning technique for urban canyons. J Navig 64(3):417–430. doi:10.1017/S0373463311000087

    Article  Google Scholar 

  • Gruyer D, Belaroussi R, Revilloud M (2014) Map-aided localization with lateral perception. In: IEEE intelligent vehicles symposium proceedings, pp 674–680. doi:10.1109/IVS.2014.6856528

  • Guivant JE, Nebot EM (2001) Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans Robot Autom 17(3):242–257. doi:10.1109/70.938382

    Article  Google Scholar 

  • Hermosilla T, Ruiz LA, Recio JA, Estornell J (2011) Evaluation of automatic building detection approaches combining high resolution images and LiDAR data. Remote Sens 3(6):1188–1210

    Article  Google Scholar 

  • Hsu L-T, Gu Y, Kamijo S (2015) 3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS Solut. doi:10.1007/s10291-015-0451-7

    Google Scholar 

  • Jaebum C (2014) Hybrid map-based SLAM using a Velodyne laser scanner. In: IEEE 17th international conference on intelligent transportation systems (ITSC), pp 3082–3087. doi:10.1109/ITSC.2014.6958185

  • Kong D, Xu L, Li X, Li S (2014) K-plane-based classification of airborne LiDAR data for accurate building roof measurement. IEEE Trans Instrum Meas 63(5):1200–1214. doi:10.1109/TIM.2013.2292310

    Article  Google Scholar 

  • Levinson J, Montemerlo M, Thrun S (2007) Map-based precision vehicle localization in urban environments. Robotics: science and systems. USA

  • Miura S, Hsu L-T, Chen F, Kamijo S (2015) GPS error correction with pseudorange evaluation using three-dimensional maps. IEEE Trans Intell Transp Syst. doi:10.1109/TITS.2015.2432122

    Google Scholar 

  • Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: AAAI proceedings, pp 593–598

  • Montemerlo M et al (2008) Junior: the stanford entry in the urban challenge. J Field Robot 25(9):569–597. doi:10.1002/rob.20258

    Article  Google Scholar 

  • Nedevschi S, Popescu V, Danescu R, Marita T, Oniga F (2013) Accurate ego-vehicle global localization at intersections through alignment of visual data with digital map. IEEE Trans Intell Transp Syst 14(2):673–687. doi:10.1109/TITS.2012.2228191

    Article  Google Scholar 

  • Obst M, Bauer S, Wanielik G (2012) Urban multipath detection and mitigation with dynamic 3D maps for reliable land vehicle localization. In: Proceedings of IEEE/ION PLANS, pp 685–691

  • Pang S, Hu X, Wang Z, Lu Y (2014) Object-based analysis of airborne LiDAR data for building change detection. Remote Sens 6(11):10733–10749

    Article  Google Scholar 

  • Patz BJ, Papelis Y, Pillat R, Stein G, Harper D (2008) A practical approach to robotic design for the DARPA urban challenge. J Field Robot 25(8):528–566. doi:10.1002/rob.20251

    Article  Google Scholar 

  • Peyraud S, Bétaille D, Renault S, Ortiz M, Mougel F, Meizel D, Peyret F (2013) About non-line-of-sight satellite detection and exclusion in a 3D map-aided localization algorithm. Sensors 13(1):829–847

    Article  Google Scholar 

  • RCTA (2006) Minimum operational performance standards (MOPS) for global positioning system/wide area augmentation system airborne equipment, RTCA document DO-229D

  • Rey-Jer Y, Bo-Cheng L (2011) A quality prediction method for building model reconstruction using LiDAR data and topographic maps. IEEE Trans Geosci Remote Sens 49(9):3471–3480. doi:10.1109/TGRS.2011.2128326

    Article  Google Scholar 

  • Rottensteiner F (2003) Automatic generation of high-quality building models from lidar data. IEEE Comput Graph Appl 23(6):42–50. doi:10.1109/MCG.2003.1242381

    Article  Google Scholar 

  • Sakai T, Yoshihara T, Fukushima S, Ito K (2009) The ionospheric correction processor for SBAS and QZSS L1-SAIF. In: Proceedings of the ION ITM, pp 312–323

  • Smith RC, Cheeseman P (1986) On the representation and estimation of spatial uncertainty. Int J Robot Res 5(4):56–68. doi:10.1177/027836498600500404

    Article  Google Scholar 

  • Susaki J (2013) knowledge-based modeling of buildings in dense urban areas by combining airborne LiDAR data and aerial images. Remote Sens 5(11):5944–5968

    Article  Google Scholar 

  • Tao V, Li J (2007) Advances in mobile mapping technology: ISPRS series, vol 4. Taylor & Francis, London

    Google Scholar 

  • Verma V, Kumar R, Hsu S (2006) 3D building detection and modeling from aerial LIDAR data. In: IEEE computer society conference on computer vision and pattern recognition, pp 2213–2220. doi:10.1109/CVPR.2006.12

  • Wang O, Lodha SK, Helmbold DP (2006) A Bayesian approach to building footprint extraction from aerial LIDAR data. In: Third international symposium on 3D data processing, visualization, and transmission, pp 192–199. doi:10.1109/3DPVT.2006.9

  • Wang L, Groves PD, Ziebart MK (2013) Urban positioning on a smartphone: real-time shadow matching using GNSS and 3D city models. In: Proceedings of ION GNSS, pp 1606–1619

  • Yi S, Rumi W, Ying Z, Fromherz M (2004) Localization from connectivity in sensor networks. IEEE Trans Parallel Distrib Syst 15(11):961–974. doi:10.1109/TPDS.2004.67

    Article  Google Scholar 

  • Zhang W, Wang H, Chen Y, Yan K, Chen M (2014) 3D building roof modeling by optimizing primitive’s parameters using constraints from LiDAR data and aerial imagery. Remote Sens 6(9):8107–8133

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the supports of the Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Oversea Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ta Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, Y., Hsu, LT., Gu, Y. et al. Optimization of 3D building models by GPS measurements. GPS Solut 21, 65–78 (2017). https://doi.org/10.1007/s10291-015-0504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0504-y

Keywords

Navigation