Skip to main content
Log in

Genetic evidence of local adaption and long distance migration in Blumeria graminis f. sp. hordei populations from China

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Barley powdery mildew, caused by the obligate biotrophic fungus Blumeria graminis f. sp. hordei (Bgh), is one of the most devastating diseases in the winter barley-growing regions of China. Genetic diversity of this fungus was assessed by analyzing 75 Bgh isolates belonging to 12 pathotypes using seven primer combinations of amplified fragment length polymorphism (AFLP) markers. The six sampling locations were 300 km to 2200 km apart. The highest gene diversity indices were observed within Baoshan (H = 0.21) in Yunnan Province and Putian (H = 0.21) in Fujian Province. Higher gene flow values were found between Baoshan and other populations (Nm = 2.010−5.765) except Yancheng in Jiangsu Province and Jiaxing in Zhejiang Province and between Putian and other populations (Nm = 2.110–5.423) except Jiaxing though a long geographical distance among some locations. Between each Bgh population pair, the genetic groups and origins of the Bgh isolates were closely correlated, and the populations were significantly differentiated (P < 0.005 or P < 0.001). These results suggested that, in spite of local adaptation of Bgh populations to hosts, frequent long distance gene flow existed among these populations in China as shown in the previous study based on virulence assessment, and the centers of genetic diversity and primary inoculum origins of Bgh were probably located in those barley-growing areas in southwestern Yunnan Province and southeastern Fujian Province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alaniz S, Armengol J, León M, Garcia-Jiménez J, Abad-Campos P (2009) Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycol Res 113:16–23

    Article  CAS  PubMed  Google Scholar 

  • Andrivon D, de Vallavieille-Pope C (1993) Racial diversity and complexity in regional populations of Erysiphe graminis f. sp. hordei in France over a 5-year period. Plant Pathol 42:443–464

    Article  Google Scholar 

  • Asigbetse KB, Fernandez D, Dubois MP, Geiger JP (1994) Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by random amplified polymorphic DNA (RAPD) analysis. Phytopathology 84:622–626

    Article  Google Scholar 

  • Bhat RG, Subbarao KV (1999) Host range specificity in Verticillium dahliae. Phytopathology 89:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154

    Article  CAS  PubMed  Google Scholar 

  • Bousse L, de Vallavieille-Pope C (2003) Effect of sexual recombination on pathotype frequencies in barley powdery mildew populations of artificially inoculated field plots. Eur J of Plant Pathol 109:13–24

    Article  Google Scholar 

  • Braun U, Cook RTA, Inman AJ, Shin HD (2002) The taxonomy of the powdery mildew fungi. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St Paul, pp 13–55

    Google Scholar 

  • Brown JKM (1994) Chance and selection in the evolution of barley mildew. Trends Microbiol 2:470–475

    Article  CAS  PubMed  Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD, Fieldman MW, Nevo E (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96:523–536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brown JKM, Jessop AC, Rezanoor HN (1991) Genetic uniformity in barley and its powdery mildew pathogen. Proc R Soc Lond B 246:83–90

    Article  Google Scholar 

  • Caffier V, de Vallavieille-Pope C, Brown JKM (1996) Segregation of avirulences and genetic basis of infection types in Erysiphe graminis f. sp. hordei. Phytopathology 86:1112–1121

    Article  Google Scholar 

  • Caffier V, Brändle UE, Wolfe MS (1999) Genotypic diversity in barley powdery mildew populations in northern France. Plant Pathol 48:582–587

    Article  Google Scholar 

  • Chen J, Lu D (1981) Division of monsoon climatic regions in China. J Beijing Forest Univ 4:1–8

    Google Scholar 

  • Chen B, Huang J, Guo Y, Chen D, Jiang W, Zhou Z (1996) Breeding of ‘Pudamai 5′ and study on the breeding way for resistance to powdery mildew of barley. J Fujian Acad Agr Sci 11:10–13

    CAS  Google Scholar 

  • Conry MJ, Dunne B (2001) Influence of number and timing of fungicide applications on the yield and quality of early and later-sown spring malting barley grown in the south-east of Ireland. J Agr Sci 136:159–167

    Article  Google Scholar 

  • Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Jonge R, Bolton MD, Kombrink A, Van den Berg GCM, Yateda KA, Thomma BPHI (2013) Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 23:1271–1282

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong J, Li M, Xu F, Qin D, Zhang J, Ge S (2012) Development trend and evolution analysis of barley varieties in Hubei. Barley Cereal Sci 4:1–4

    CAS  Google Scholar 

  • Dreiseitl A (2000) Direct selection in the Blumeria graminis f. sp. hordei population in the Czech Republic. Acta Phytopathol Entomol Hun 35:317–322

    CAS  Google Scholar 

  • Dreiseitl A (2003) Adaptation of Blumeria graminis f. sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant Soil Environ 49:241–248

    Google Scholar 

  • Dreiseitl A, Kosman E (2013) Virulence phenotypes of Blumeria graminis f. sp. hordei in South Africa. Eur J Plant Pathol 136:113–121

    Article  Google Scholar 

  • Dreiseitl A, Wang J (2007) Virulence and diversity of Blumeria graminis f. sp. hordei in east China. Eur J Plant Pathol 117:357–368

    Article  Google Scholar 

  • Dreiseitl A, Dinoor A, Kosman E (2006) Virulence and diversity of Blumeria graminis f. sp. hordei in Israel and in the Czech Republic. Plant Dis 90:1031–1038

    Article  Google Scholar 

  • Enjalbert J, Duan X, Leconte M, Hovmølle S, de Vallavieille-Pope C (2005) Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Mol Ecol 14:2065–2073

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Fargette M, Lollier V, Phillips M, Blok V, Frutos R (2005) AFLP analysis of the genetic diversity of Meloidogyne chitwoodi and M. fallax major agricultural pests. C R Biol 328:455–462

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Williams DJ (2008) AFLP variation in 25 Avena species. Theor Appl Genet 117:333–342

    Article  CAS  PubMed  Google Scholar 

  • Gharbi Y, Trikic MA, Trabelsi R, Fendri I, Daayf F, Gdoura R (2015) Genetic structure of Verticillium dahliae isolates infecting olive tree in Tunisia using AFLP, pathogenicity and PCR markers. Plant Pathol 64:871–879

    Article  Google Scholar 

  • Godwin ID, Aitken EAB, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Götz M, Friedrich S, Boyle C (1996) Development of cleistothecia and early ascospore release of Erysiphe graminis DC. f. sp. tritici in winter wheat in relation to host age and climatic conditions. J Plant Dis Protect 103:134–141

    Google Scholar 

  • Hermansen JE, Torp U, Prahm LP (1978) Studies of transport of live spores of cereal mildew and rust fungi across the North Sea. Grana 17:41–46

    Article  Google Scholar 

  • Huang R, Kranz J, Welz HG (1995) Virulence gene frequency change in Erysiphe graminis f. sp. hordei due to selection by non-corresponding barley mildew resistance genes and hitchhiking. J Phytopathol 143:287–294

    Article  Google Scholar 

  • Huang J, Li Q, Chen H (2008) Identification and application of barley germplasm resources with resistance to powdery mildew. J Plant Gen Resour 9:101–104

    Google Scholar 

  • Jia S, Duan X, Zhou Y, Lu G, Wang Z (2007) Establishment of ISSR PCR reaction system for Blumeria graminis f. sp. tritici and its application in diversity analysis of this pathogen. Acta Phytopathol Sinica 34:493–499

    CAS  Google Scholar 

  • Jin Y, Rouse M, Groth J (2014) Population diversity of Puccinia graminis is sustained through sexual cycle on alternate hosts. J Integr Agr 13:262–264

    Article  Google Scholar 

  • Jørgensen JH, Wolfe M (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Article  Google Scholar 

  • Justesen AF, Ridoutb CJ, Hovmøller MS (2002) The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathol 51:13–23

    Article  Google Scholar 

  • Kolmer JA (1993) Selection in a heterogeneous population of Puccinia recondite f. sp. tritici. Phytopathology 83:909–914

    Article  Google Scholar 

  • Kolmer JA, Liu JQ, Sies M (1995) Virulence and molecular polymorphism in Puccinia recondita f. sp. tritici in Canada. Phytopathology 85:276–285

    Article  CAS  Google Scholar 

  • Leung H, Nelson RJ, Leach JE (1993) Population structure of plant pathogenic fungi and bacteria. Adv Plant Pathol 10:157–205

    Google Scholar 

  • Levy M, Correa-Victoria FJ, Zeigler RS, Xu S, Hamer JE (1993) Genetic diversity of the rice blast fungus in a disease nursery in Columbia. Phytopathology 83:1427–1433

    Article  CAS  Google Scholar 

  • Limpert E (1987) Barley mildew in Europe: evidence of wind dispersal of the pathogen and its implications for improved use of host resistance and of fungicides for mildew control. In: Wolfe MS, Limpert E (eds) Integrated control of cereal mildews: monitoring the pathogen. Martinus Nijhoff, Dordrecht, pp 31–34

    Google Scholar 

  • Limpert E, Clifford B, Dreiseitl A, Johnson R, Müller K, Roelfs A, Wellings C (1994) Systems of designation of pathotypes of plant pathogens. J Phytopathol 140:359–362

    Article  Google Scholar 

  • Majer D, Mithen R, Lewis BG, Vos P, Oliver RP (1996) The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycol Res 9:1107–1111

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McDonald BA, McDermott JM (1993) Population genetics of plant pathogenic fungi. Bioscience 43:311–319

    Article  Google Scholar 

  • Müller K, McDermott JM, Wolfe MS, Limpert E (1996) Analysis of diversity of plant pathogens: the barley powdery mildew pathogen across Europe. Eur J of Plant Pathol 102:385–395

    Article  Google Scholar 

  • Nelson RJ, Baraoidan MR, Vera Cruz CM, Yap IV, Leach JE, Mew TW, Leung H (1994) Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl Environ Microb 60:3275–3283

    CAS  Google Scholar 

  • Newton AC, Hackett CA, Guy DC (1998) Diversity and complexity of Erysiphe graminis f. sp. hordei collected from barley cultivar mixtures or barley plots treated with a resistance elicitor. Eur J Plant Pathol 104:925–931

    Article  Google Scholar 

  • Parks R, Carbone I, Murphy JP, Cowger C (2009) Population genetic analysis of an eastern U.S. wheat powdery mildew population reveals geographic subdivision and recent common ancestry with U.K. and Israeli populations. Phytopathology 99:840–849

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94:255–263

    Article  CAS  Google Scholar 

  • Péros JP, Troulet C, Guerriero M, Michel-Romiti C, Notteghem JL (2005) Genetic variation and population structure of the grape powdery mildew fungus, Erysiphe necator, in southern France. Eur J of Plant Pathol 113:407–416

    Article  Google Scholar 

  • Ploetz RC, Schnell RJ, Ying Z, Zheng Q, Olano CT, Motamayor JC, Johnson ES (2005) Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. Eur J of Plant Pathol 111:317–326

    Article  CAS  Google Scholar 

  • Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390

    Article  CAS  PubMed  Google Scholar 

  • Thuan NTN, Bigirimana J, Roumen E, van der Straeten D, Höftel M (2006) Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur J Plant Pathol 114:381–396

    Article  CAS  Google Scholar 

  • Tooley PW, O’Neill NR, Goley ED, Carras MM (2000) Assessment of diversity in Claviceps africana and other Claviceps species by RAM and AFLP analyses. Phytopathology 90:1126–1130

    Article  CAS  PubMed  Google Scholar 

  • Tucker MA, Moffat CS, Ellwood SR, Tan KC, Jayasena K, Oliver RP (2015) Development of genetic SSR markers in Blumeria graminis f. sp. hordei and application to isolates from Australia. Plant Pathol 64:337–343

    Article  CAS  Google Scholar 

  • van de Peer Y, de Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Xue F, Yang P, Duan X, Zhou Y, Shen C, Zhang G, Wang B (2014) Development of SSR markers for a phytopathogenic fungus, Blumeria graminis f.sp. tritici, using a FIASCO Protocol. J Integr Agr 13:100–104

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST ≠ 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Wolfe MS, McDermott JM (1994) Population genetics of plant pathogen interactions: the example of the Erysiphe graminisHordeum vulgare pathosystem. Annu Rev Phytopathol 32:89–113

    Article  Google Scholar 

  • You Q (2001) Discuss the differences of wind between winter and summer in Yunnan. Geogr Educ 2:40

    Google Scholar 

  • Yu D, Le-Sang GD, Ou Z, Ma D (1998) A review on study of wild barley germplasm resources in Tibet. Tibet J Agric Sci 20:14–19

    Google Scholar 

  • Zabeau M, Vos P (1993) Selective restriction fragment amplification, a method for DNA finger-printing. Publication 0 534 858 AI Bulletin 93/13, European Patent Office, Paris

  • Zhang Z, Henderson C, Perfect E, Carver TLW, Thomas BJ, Skamnioti P, Gurr SJ (2005) Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol Plant Pathol 6:561–575

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Yang Z, Qu S (2013) Progress on barley production and its resistance to powdery mildew in Yunnan province. Barley Cereal Sci 1:36–39

    Google Scholar 

  • Zhong S, Steffenson BJ (2000) A simple and sensitive silver staining method for detecting AFLP markers in fungi. Fungal Genet Newslett 47: 101–102. Available via DIALOG. http://www.fgsc.net/fgn47/pdfs/FGN47zhong.pdf. Cited 16 Jan 1999

  • Zhong S, Steffenson BJ (2001) Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 91:469–476

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Wang J, Jia Q, Lin F, Zhou Y, Yang J (2009) Investigation on virulence of Blumeria graminis f. sp. hordei population and resistance to powdery mildew in barley varieties (lines). Acta Phytophy Sinica 6:509–516

    Google Scholar 

  • Zhu J, Wang J, Jia Q, Yang J, Zhou Y, Lin F, Hua W, Shang Y (2010) Pathotypes and genetic diversity of Blumeria graminis f. sp. hordei in the winter barley regions in China. Agr Sci China 9:1787–1798

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor He Chen, Yancheng Academy of Agricultural Sciences, Yancheng, China, Associate Professor Shujie Wang, Zhumadian Institute of Agricultural Sciences, Zhumadian, China, Professor Delu Chen, Putian Institute of Agricultural Sciences, Putian, China, and Professor Zaixin Li, Jingzhou Academy of Agricultural Sciences, Jingzhou, China, for collecting Bgh isolates. We thank Professor Xianyu Duan, Institution of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China, for revising the paper carefully. This work was financially supported by the Special Fund for Agro-scientific Research in the Public Interest (201303016), the Public Benefit Technology Applied Research Project of Zhejiang Province (2014C32016), the China Agriculture Research System (CARS-05) and the National Natural Science Foundation of China (30671289, 31101149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhou, Y., Shang, Y. et al. Genetic evidence of local adaption and long distance migration in Blumeria graminis f. sp. hordei populations from China. J Gen Plant Pathol 82, 69–81 (2016). https://doi.org/10.1007/s10327-016-0643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-016-0643-1

Keywords

Navigation