Skip to main content

Advertisement

Log in

Bone mineral density in chimpanzees, humans, and Japanese macaques

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

We performed a comparative study of bone mechanical properties in the radii of chimpanzees (Pan troglodytes), humans (Homo sapiens), and Japanese macaques (Macaca fuscata) using peripheral quantitative computed tomography. We investigated: (1)cortical bone area relative to the total periosteal area (PrA); (2) trabecular bone area relative to PrA; (3) cortical bone density; and (4) trabecular bone density. The cortical bone area index for chimpanzees was almost the same as that of Japanese macaques, whereas the equivalent value in humans was about the two-fifths that of the others. Values for the other three properties were constant among these three catarrhine species. Chimpanzees do not particularly resemble humans, but are more similar to digitigrade macaques in terms of bone properties. The constant trabecular bone area index and trabecular density value in these species may suggest that a certain amount of trabecular bone (20–30% of total bone area at the distal 4% level of the forearm) is necessary to achieve normal bone turnover. The physiological metabolism of bone, including cortical bone density, might be conserved in these catarrhines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Black A, Tilmont EM, Handy AM, Scott WW, Shapses SA, Ingram DK, Roth GS, Lane MA (2001) A nonhuman primate model of age-related bone loss: a longitudinal study in male and premenopausal female rhesus monkeys. Bone 28:295–302

    Article  CAS  PubMed  Google Scholar 

  • Cerroni AM, Tomlinson GA, Turnquist JE, Grynpas MD (2000) Bone mineral density, osteopenia, and osteoporosis in the rhesus, macaques of Cayo Santiago. Am J Phys Anthropol 113:389–410

    CAS  PubMed  Google Scholar 

  • Champ JE, Binkley N, Havighurst T, Colman RJ, Kemnitz JW, Roechker EB (1996) The effect of advancing age on bone mineral content of female rhesus monkeys. Bone 19:485–492

    CAS  PubMed  Google Scholar 

  • Colman RJ, Lane MA, Binkley N, Wegner FH, Kemnitz JW (1999) Skeletal effects of aging in male rhesus monkeys. Bone 24:17–23

    CAS  PubMed  Google Scholar 

  • Di LC, Tarolo GL, Bagni B, Bestetti A, Tagliabue L, Pietrogrande L, Pepe L (2002) Peripheral quantitative computed tomography (PQCT) in the evaluation of bone geometry, biomechanics and mineral density in postmenopausal women. Radiol Med 103:233–241

    Google Scholar 

  • Gatti D, Sartori E, Braga V, Corallo F, Rossini M, Adami S (2001) Radial bending breaking resistance derived by densitometric evaluation predicts femoral neck fracture. Osteoporos Int 12:864–869

    Article  CAS  PubMed  Google Scholar 

  • Haapasalo H, Kontulainen H, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  CAS  PubMed  Google Scholar 

  • Hamada Y (1994) Standard growth patterns and variation in growth patterns of the Japanese monkeys (Macaca fuscata). Based on an analysis by the spline function method. Anthropol Sci 102:57–76

    Google Scholar 

  • Hamada Y, Udono T, Teramoto M, Hayasaka I (1998) Development of the hand and wrist bones in chimpanzees. Primates 39:157–169

    Google Scholar 

  • Hamada Y, Hayakawa S, Suzuki J, Ohkura S (1999) Adolescent growth and development in Japanese macaques (Macaca fuscata): punctuated adolescent growth spurt by season. Primates 40:439–452

    Google Scholar 

  • Hasegawa Y, Kushida K, Yamazaki K, Inoue T (1997) Volumetric bone mineral density using peripheral quantitative computed tomography in Japanese women. Osteoporos Int 7:195–199

    CAS  PubMed  Google Scholar 

  • Hiyaoka A, Yoshida T, Cho F, Yoshikawa Y (1996) Changes in bone mineral density of lumber vertebrae after parturition in African green monkeys (Cercopithecus aethiops). Exp Anim 45:257–259

    CAS  PubMed  Google Scholar 

  • Horikoshi T, Endo N, Uchiyama T, Tanizawa T, Takahashi HE (1999) Peripheral quantitative computed tomography of the femoral neck in 60 Japanese women. Calcif Tissue Int 65:447–453

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss C (1999) Use of peripheral quantitative computed tomography for densitometry of the femoral neck and spine in cynomolgus monkeys (Macaca fascicularis). Bone 24:101–107

    Article  CAS  PubMed  Google Scholar 

  • Jerome CP, Johnson CS, Lees CJ, (1995) Effect of treatment for 3 months with human parathyroid hormone 1–34 peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 17 [Suppl]:415S-420S

  • Jerome CP, Turner CH, Lees CJ (1997) Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int 60:265–270

    Article  CAS  PubMed  Google Scholar 

  • Jerome CP, Johnson CS, Vafai HT, Kaplan KC, Bailey J, Capwell B, Fraser F, Hansen L, Ramsay H, Shadoan M, Lees CJ, Thomsen JS, Mosekilde L (1999) Effect of treatment for 6 months with human parathyroid hormone (1–34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 25:301–309

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y (2003) Age-changes of bone mineral density in the distal radius of chimpanzees and Japanese macaques. Anthropol Sci (in press)

  • Krueger D, Todd H, Haffa A, Bruner J, Yandow D, Binkley N (1999) Central region-of interest analysis of lumber spine densitometry demonstrates lower bone mass in older rhesus monkeys. Bone 24:29–33

    Article  CAS  PubMed  Google Scholar 

  • Lark MW, Stroup GB, James IE, Dodds RA, Hwang SM, Blake SM, Lechowska BA, Hoffman SJ, Smith BR, Kapadia R, Liang X, Erhard K, Ru Y, Dong X, Marquis RW, Veber D, Gowen M (2002)A potent small molecule, nonpeptide inhibitor of cathepsin K (SB 331750) prevents bone matrix resorption in the ovariectomized rat. Bone 30:746–753

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Jee WS (1991) Adaptation of diaphyseal structure to aging and decreased mechanical loading in the adult rat: a densitometric and histomorphometric study. Anat Rec 229:291–297

    CAS  PubMed  Google Scholar 

  • Matsubayashi K, Gotoh S, Suzuki J, Matsubayashi N, Miwa N, Kumazaki K, Abe M, Kamanaka Y, Maeda N, Katsuta C, Kato A (1999) Basic data book of monkeys. Primate Research Institute, Kyoto University, Inuyama, Japan

  • Matsumura A, Okada M, Inokuchi, S (1995) Adaptation of cross-sectional geometry of rat femur to different mechanical environments. Riv Anthropol 73:171–180

    Google Scholar 

  • Mori S, Harruff R, Ambrosius W, Burr DB (1997) Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21:521–526

    Article  CAS  PubMed  Google Scholar 

  • Ohman JC, Krochta TJ, Lovejoy CO (1997) Cortical bone distribution in the femoral neck of hominoids: implications for the locomotion of Australopithecus afarensis. Am J Phys Anthropol 104:117–131

    Article  CAS  PubMed  Google Scholar 

  • Ott SM, Hanlan M, Lipkin EW, Newell-Morris L (1997). Evaluation of vertebral volumetric vs. areal bone mineral density during growth. Bone 20:553–556

    Article  CAS  PubMed  Google Scholar 

  • Rauch F, Tutlewski B, Fricke O, Rieger-Wettengl G, Schauseil-Zipf U, Herkenrath P, Neu CM, Schoenau E (2001) Analysis of cancellous bone turnover by multiple slice analysis at the distal radius: a study using peripheral quantitative computed tomography. J Clin Densitom 4:257–262

    CAS  PubMed  Google Scholar 

  • Spoor CF, Zonneveld FW, Macho GA (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91:469–484

    CAS  PubMed  Google Scholar 

  • Trinkaus E, Stringer CB, Ruff CB, Hennessy RJ, Roberts MB, Parfitt SA (1999) Diaphyseal cross-sectional geometry of the Boxgrove 1 Middle Pleistocene human tibia. J Hum Evol 37:1–25

    Article  CAS  PubMed  Google Scholar 

  • Wosje KS, Binkley TL, Specker BL (2001) Comparison of bone parameters by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography in Hutterite vs. non Hutterite women aged 35–60 years. Bone 29:192–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the staff of the Kumamoto Primate Park, Sanwa Kagaku Kenkyusho, for allowing experimentation and for helping to measure the subjects. Special thanks to Miss Yoshiko Emi and Mr. Yusuke Mori of the Park, Dr. Suchinda Malaivijitnond, Primate Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Thailand, and Dr. Osamu Takenaka, Primate Research Institute, Kyoto University, for joining the study as volunteers. We express gratitude to Dr. Juri Suzuki, Primate Research Institute, Kyoto University, for helping with the anesthesia. Y. Kikuchi thanks Dr. Hidemi Ishida of Kyoto University, for allowing him to carrying out this research freely. Y. Kikuchi is also grateful to Dr. Tsunehiko Hanihara and Dr. Ken-ichi Shinoda, Department of Anatomy, Saga Medical School, for providing excellent environments in which this study could be performed. Finally, Y. Kikuchi sincerely thanks Dr. Hidemi Ishida and Dr. Masato Nakatsukasa of Kyoto University for his advice. This study was supported by a Grant-in-Aid for COE Research 2001 and a Grant-in-Aid for Specially Promoted Research (COE) 2002 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kikuchi.

About this article

Cite this article

Kikuchi, Y., Udono, T. & Hamada, Y. Bone mineral density in chimpanzees, humans, and Japanese macaques. Primates 44, 151–155 (2003). https://doi.org/10.1007/s10329-002-0031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-002-0031-7

Keywords

Navigation