Skip to main content
Log in

Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

To assess lung perfusion in young patients with cystic fibrosis (CF) using an arterial spin labeling (ASL) technique.

Materials and methods

Perfusion imaging was performed in 5 healthy volunteers and 33 pediatric patients (13 ± 5 years) with CF using an ASL technique. Image quality was evaluated on a five-point scale (1 = excellent). Quantitative perfusion maps were calculated based on the modified Bloch equations. Perfusion differences between volunteers and CF patients and regional differences between lobes were analyzed using Student’s t test. The association of perfusion values and forced expiratory volume in 1 s (FEV1) was analyzed using univariate regression analysis.

Results

Mean lung perfusion was 698 ± 67 ml/100g/min (range: 593–777 ml/100g/min) in volunteers and 526 ± 113 ml/100g/min (range: 346–724 ml/100g/min) in CF patients. Median image quality was 2 in volunteers and 3 in CF patients. In CF patients, significantly lower perfusion was observed in the upper lobes compared to healthy volunteers. Mean perfusion values significantly correlated with FEV1 (r = 0.84, P < 0.0001).

Conclusion

ASL perfusion imaging provides lung perfusion assessment in young CF patients. This non-invasive functional imaging technique is worth being evaluated in the clinical monitoring of CF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruzal-Shapiro C (1998) Cystic fibrosis. An overview. Radiol Clin North Am 36(1): 143–161

    Article  PubMed  CAS  Google Scholar 

  2. Mastella G, Zanolla L, Castellani C, Altieri S, Furnari M, Giglio L, Lombardo M, Miano A, Sciuto C, Pardo F, Magazzu G (2001) Neonatal screening for cystic fibrosis: long-term clinical balance. Pancreatology 1(5): 531–537

    Article  PubMed  CAS  Google Scholar 

  3. Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Muller FM, Kauczor HU (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis–initial results. Eur Radiol 16(10): 2147–2152

    Article  PubMed  Google Scholar 

  4. Johnson K (2000) Ventilation and perfusion scanning in children. Paediatr Respir Rev 1(4): 347–353

    Article  PubMed  CAS  Google Scholar 

  5. de Jong PA, Mayo JR, Golmohammadi K, Nakano Y, Lequin MH, Tiddens HA, Aldrich J, Coxson HO, Sin DD (2006) Estimation of cancer mortality associated with repetitive computed tomography scanning. Am J Respir Crit Care Med 173(2): 199–203

    Article  PubMed  Google Scholar 

  6. Bauman G, Puderbach M, Deimling M, Jellus V, Chefd’hotel C, Dinkel J, Hintze C, Kauczor HU, Schad LR (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62(3): 656–664

    Article  PubMed  Google Scholar 

  7. Fan L, Liu SY, Xiao XS, Sun F (2010) Demonstration of pulmonary perfusion heterogeneity induced by gravity and lung inflation using arterial spin labeling. Eur J Radiol 73(2): 249–254

    Article  PubMed  Google Scholar 

  8. Henderson AC, Prisk GK, Levin DL, Hopkins SR, Buxton RB (2009) Characterizing pulmonary blood flow distribution measured using arterial spin labeling. NMR Biomed 22(10): 1025–1035

    PubMed  Google Scholar 

  9. Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9(3): 483–487

    Article  PubMed  CAS  Google Scholar 

  10. Martirosian P, Boss A, Fenchel M, Deimling M, Schafer J, Claussen CD, Schick F (2006) Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI. Magn Reson Med 55(5): 1065–1074

    Article  PubMed  Google Scholar 

  11. Pracht ED, Fischer A, Arnold JF, Kotas M, Flentje M, Jakob PM (2006) Single-shot quantitative perfusion imaging of the human lung. Magn Reson Med 56(6): 1347–1351

    Article  PubMed  Google Scholar 

  12. Roberts DA, Gefter WB, Hirsch JA, Rizi RR, Dougherty L, Lenkinski RE, Leigh JS Jr, Schnall MD (1999) Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging–preliminary results in healthy volunteers. Radiology 212(3): 890–895

    PubMed  CAS  Google Scholar 

  13. Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D, Jakob PM (2003) Quantitative perfusion mapping of the human lung using 1H spin labeling. J Magn Reson Imaging 18(2): 260–265

    Article  PubMed  Google Scholar 

  14. Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, Weissmann N (2008) Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 32(6): 1639–1651

    Article  PubMed  CAS  Google Scholar 

  15. Boss A, Schaefer S, Martirosian P, Claussen CD, Schick F, Schaefer JF (2008) Magnetic resonance imaging of lung tissue: influence of body positioning, breathing and oxygen inhalation on signal decay using multi-echo gradient-echo sequences. Invest Radiol 43(6): 433–438

    Article  PubMed  Google Scholar 

  16. Prisk GK, Yamada K, Henderson AC, Arai TJ, Levin DL, Buxton RB, Hopkins SR (2007) Pulmonary perfusion in the prone and supine postures in the normal human lung. J Appl Physiol 103(3): 883–894

    Article  PubMed  Google Scholar 

  17. Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS (1994) Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 7(1–2): 75–82

    Article  PubMed  CAS  Google Scholar 

  18. Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB (1999) T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 29(3): 245–252

    Article  PubMed  CAS  Google Scholar 

  19. Roberts DA, Detre JA, Bolinger L, Insko EK, Lenkinski RE, Pentecost MJ, Leigh JS Jr. (1995) Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 196(1): 281– 286

    PubMed  CAS  Google Scholar 

  20. Stadler A, Jakob PM, Griswold M, Barth M, Bankier AA (2005) T1 mapping of the entire lung parenchyma: influence of the respiratory phase in healthy individuals. J Magn Reson Imaging 21(6): 759–764

    Article  PubMed  Google Scholar 

  21. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1): 37–45

    Article  PubMed  CAS  Google Scholar 

  22. van Beek EJ, Hill C, Woodhouse N, Fichele S, Fleming S, Howe B, Bott S, Wild JM, Taylor CJ (2007) Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-Helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol 17(4): 1018–1024

    Article  PubMed  Google Scholar 

  23. Bolar DS, Levin DL, Hopkins SR, Frank LF, Liu TT, Wong EC, Buxton RB (2006) Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med 55(6): 1308–1317

    Article  PubMed  CAS  Google Scholar 

  24. Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU (2007) Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 64(3): 329–334

    Article  PubMed  Google Scholar 

  25. Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, Prisk GK (2007) Vertical gradients in regional lung density and perfusion in the supine human lung: the slinky effect. J Appl Physiol 103(1): 240–248

    Article  PubMed  Google Scholar 

  26. Kraemer R, Baldwin DN, Ammann RA, Frey U, Gallati S (2006) Progression of pulmonary hyperinflation and trapped gas associated with genetic and environmental factors in children with cystic fibrosis. Respir Res 7: 138–153

    Article  PubMed  Google Scholar 

  27. Schuster DP, Kaplan JD, Gauvain K, Welch MJ, Markham J (1995) Measurement of regional pulmonary blood flow with PET. J Nucl Med 36(3): 371–377

    PubMed  CAS  Google Scholar 

  28. Brudin LH, Rhodes CG, Valind SO, Wollmer P, Hughes JM (1987) Regional lung density and blood volume in nonsmoking and smoking subjects measured by PET. J Appl Physiol 63(4): 1324–1334

    PubMed  CAS  Google Scholar 

  29. Molinari F, Eichinger M, Risse F, Plathow C, Puderbach M, Ley S, Herth F, Bonomo L, Kauczor HU, Fink C (2007) Navigator-triggered oxygen-enhanced MRI with simultaneous cardiac and respiratory synchronization for the assessment of interstitial lung disease. J Magn Reson Imaging 26(6): 1523–1529

    Article  PubMed  Google Scholar 

  30. Young MA, Knight DR, Vatner SF (1987) Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis 30(3): 211–234

    Article  PubMed  CAS  Google Scholar 

  31. Pell GS, Lewis DP, Branch CA (2003) Pulsed arterial spin labeling using TurboFLASH with suppression of intravascular signal. Magn Reson Med 49(2): 341–350

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Schraml.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schraml, C., Schwenzer, N.F., Martirosian, P. et al. Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T. Magn Reson Mater Phy 25, 155–162 (2012). https://doi.org/10.1007/s10334-011-0271-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-011-0271-x

Keywords

Navigation