Skip to main content
Log in

Analysis of 7 Dinitroaniline Residues in Complex Food Matrices by GC–NCI/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A modified quick, easy, cheap, effective, rugged, and safe sample preparation method combined with gas chromatography–negative chemical ionization–mass spectrometry (GC–NCI/MS) has been developed for the determination of 7 dinitroaniline herbicide residues in complex matrices (garlic, olive oil, scallion, leek and chili). Dinitroaniline residues were extracted with hexane-saturated acetonitrile. After the cleanup with the dispersive solid-phase extraction, the extract was analyzed by GC–NCI/MS in selected ion monitoring mode. Two isotope internal standards (trifluralin-d 14 and pendimethalin-d 5) were employed for quantification. Compared with electron ionization (EI) mode, the superiorities of NCI in sensitivity and selectivity were investigated. Limits of the detection of 7 dinitroanilines were in the range of 0.014–0.096 μg kg−1, and there were no interfering peaks (unlike in EI) in the complex matrices. Recoveries of 7 dinitroanilines in five matrices at three spiked levels (10, 20 and 40 μg kg−1) ranged from 61 to 126 % and the relative standard deviations were all below 12 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park NI, Suto Y, Miura Y, Nakatani N, Iori SI, Ogasawara M (2002) Weed Biol Manag 2:159–162

    Article  CAS  Google Scholar 

  2. Shabana EF, Battah MG, Kobbia IA, Eladel HM (2001) Ecotoxicol Environ Saf 49:106–110

    Article  CAS  Google Scholar 

  3. Fernandes TC, Mazzeo DEC, Marin-Morales MA (2007) Pestic Biochem Physiol 88:252–259

    Article  CAS  Google Scholar 

  4. García-Valcárcel AI, Tadeo JL (2003) J Agric Food Chem 51:999–1004

    Article  Google Scholar 

  5. Li H, Sheng G, Sheng W, Xu O (2002) Chemosphere 48:335–341

    Article  CAS  Google Scholar 

  6. Piutti S, Marchand AL, Lagacherie B, Martin-Laurent F, Soulas G (2002) Pest Manag Sci 58:303–312

    Article  CAS  Google Scholar 

  7. Kulshrestha G, Singh SB, Lal SP, Yaduraju NT (2000) Pest Manag Sci 56:202–206

    Article  CAS  Google Scholar 

  8. Poleksić V, Karan V (1999) Ecotoxicol Environ Saf 43:213–221

    Article  Google Scholar 

  9. Mitrofanova I, Zilbervarg I, Yemets A, Mitrofanova O, Blume Y (2003) Cell Biol Int 27:229–231

    Article  CAS  Google Scholar 

  10. Patel S, Bajpayee M, Pandey AK, Parmar D, Dhawan A (2007) Toxicol In Vitro 21:1409–1418. doi:10.1016/j.tiv.2007.05.009

    Article  CAS  Google Scholar 

  11. Garcia-Valcarcel A, Sanchez-Brunete C, Martinez L, Tadeo J (1996) J Chromatogr A 719:113–119

    Article  CAS  Google Scholar 

  12. Engebretson J, H G, Hengel M, Shibamoto T (2001) J Agric Food Chem 49:2198–2206

    Article  CAS  Google Scholar 

  13. Guan F, Watanabe K, Ishii A, Seno H, Kumazawa T, Hattori H, Suzuki O (1998) J Chromatogr B Biomed Sci Appl 714:205–213

    Article  Google Scholar 

  14. Yang X, Wang J, Xu DC, Qiu JW, Ma Y, Cui J (2010) Food Anal Methods 4:186–195. doi:10.1007/s12161-010-9155-3

    Article  Google Scholar 

  15. Albero B, Sánchez-Brunete C, Tadeo JL (2005) Talanta 66:917–924

    Article  CAS  Google Scholar 

  16. Chen Z, Zhang H, Liu B, Yang G, Aboul-Enein HY, Wang W, Ding R, Du H, Li H (2007) Chromatographia 66:887–891

    Article  CAS  Google Scholar 

  17. Qu L-J, Zhang H, Zhu J-H, Yang G-S, Aboul-Enein HY (2010) Food Chem 122:327–332. doi:10.1016/j.foodchem.2010.02.038

    Article  CAS  Google Scholar 

  18. Shuling S, Xiaodong M, Chongjiu L (2007) Food Control 18:448–453. doi:10.1016/j.foodcont.2005.12.001

    Article  Google Scholar 

  19. Zhao P, Wang L, Luo J, Li J, Pan C (2012) J Sep Sci 35:153–158. doi:10.1002/jssc.201100566

    Article  CAS  Google Scholar 

  20. Ferrer C, Gómez MJ, García-Reyes JF, Ferrer I, Thurman EM, Fernández-Alba AR (2005) J Chromatogr A 1069:183–194

    Article  CAS  Google Scholar 

  21. Zawiyah S, Che Man YB, Nazimah SAH, Chin CK, Tsukamoto I, Hamanyza AH, Norhaizan I (2007) Food Chem 102:98–103. doi:10.1016/j.foodchem.2006.05.003

    Article  CAS  Google Scholar 

  22. Wang JH, Xu Q, Jiao K (1998) J Chromatogr A 818:138–143

    Article  CAS  Google Scholar 

  23. Lehotay SJ, Mastovska K, Yun SJ (2005) J AOAC Int 88:630–638

    CAS  Google Scholar 

  24. Shen CY, Cao XW, Shen WJ, Jiang Y, Zhao ZY, Wu B, Yu KY, Liu H, Lian HZ (2011) Talanta 84:141–147

    Article  CAS  Google Scholar 

  25. Lehotay SJ, Kok AD, Hiemstra M, Bodegraven PV (2005) J AOAC Int 88:595–614

    CAS  Google Scholar 

  26. Borras E, Sanchez P, Munoz A, Tortajada-Genaro L (2011) Anal Chim Acta 699:57–65

    Article  CAS  Google Scholar 

  27. Huang Z, Li Y, Chen B, Yao S (2007) J Chromatogr B 853:154–162

    Article  CAS  Google Scholar 

  28. Uddin R, Iqbal S, Khan MF, Parveen Z, Ahmed M, Abbas M (2011) Bull Environ Contam Toxicol 86:83–89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Science and Technology Plan Projects (2011KJ39 and 2012KJ31) of the General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) of People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-jian Shen or Ji-yang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Gh., Shen, Wj., Wu, B. et al. Analysis of 7 Dinitroaniline Residues in Complex Food Matrices by GC–NCI/MS. Chromatographia 77, 493–499 (2014). https://doi.org/10.1007/s10337-013-2618-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2618-0

Keywords

Navigation