Skip to main content
Log in

Linguistic asymmetry, egocentric anchoring, and sensory modality as factors for the observed association between time and space perception

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Temporal and spatial representations have been consistently shown to be inextricably intertwined. However, the exact nature of time–space mapping remains unknown. On the one hand, the conceptual metaphor theory postulates unilateral, asymmetric mapping of time onto space, that is, time is perceived in spatial terms but the perception of space is relatively independent of time. On the other hand, a theory of magnitude assumes bilateral and symmetric interactions between temporal and spatial perceptions. In the present paper, we argue that the concepts of linguistic asymmetry, egocentric anchoring, and sensory modality provide potential explanations for why evidences favoring both asymmetry and symmetry have been obtained. We first examine the asymmetry model and suggest that language plays a critical role in it. Next, we discuss the symmetry model in relation to egocentric anchoring and sensory modality. We conclude that since these three factors may jointly account for some conflicting past results regarding the strength and directionality of time–space mapping, they should be taken into serious consideration in future test designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alards-Tomalin D, Leboe-McGowan JP, Shaw JD, Leboe-McGowan LC (2014) The effects of numerical magnitude, size, and color saturation on perceived interval duration. J Exp Psychol Learn Mem Cogn 40:555–566

    Article  PubMed  Google Scholar 

  • Alexander I, Cowey A, Walsh V (2005) The parietal cortex in time perception: back to Critchley, the Zeitraffer phenomenon. Cogn Neuropsychol 22:306–315

    Article  PubMed  Google Scholar 

  • Assmus A, Marshall JC, Ritzl A, Noth J, Zilles K, Fink GR (2003) Left inferior parietal cortex integrates time and space during collision judgments. Neuroimage 20:82–88

    Article  Google Scholar 

  • Barsalou LW (2008) Grounded cognition. Annu Rev Psychol 59:617–645

    Article  PubMed  Google Scholar 

  • Barsalou LW, Wiemer-Hastings K (2005) Situating abstract concepts. In: Pecher D, Zwaan RA (eds) Grounding cognition: the role of perception and action in memory, language, and thought. Cambridge University Press, New York, pp 129–163

    Chapter  Google Scholar 

  • Bender A, Beller S (2014) Mapping spatial frames of reference onto time: a review of theoretical accounts and empirical findings. Cognition 132:342–382

    Article  PubMed  Google Scholar 

  • Bender A, Beller S, Bennardo G (2010) Temporal frames of reference: conceptual analysis and empirical evidence from German, English, Mandarin Chinese, and Tongan. J Cogn Cult 10:283–307

    Article  Google Scholar 

  • Beran MJ, Rumbaugh DM (2001) ‘Constructive’ enumeration by chimpanzees (Pan troglodytes) on a computerized task. Anim Cogn 4:81–89

    Article  Google Scholar 

  • Beudel M, Renken R, Leenders KL, de Jong BM (2009) Cerebral representations of space and time. Neuroimage 44:1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Bjoertomt O, Cowey A, Walsh V (2002) Spatial neglect in near and far space investigated by repetitive transcranial magnetic stimulation. Brain 125:2012–2022

    Article  PubMed  Google Scholar 

  • Boltz MG, Yum YN (2010) Temporal concepts and predicted duration judgments. J Exp Soc Psychol 46:895–904

    Article  Google Scholar 

  • Bonato M, Zorzi M, Umiltà C (2012) When time is space: evidence for a mental timeline. Neurosci Biobehav Rev 36:2257–2273

    Article  PubMed  Google Scholar 

  • Bonn CD, Cantlon JF (2012) The origins and structure of quantitative concepts. Cogn Neuropsychol 29:149–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Boroditsky L (2000) Metaphoric structuring: understanding time through spatial metaphors. Cognition 75:1–28

    Article  CAS  PubMed  Google Scholar 

  • Boroditsky L (2001) Does language shape thought? English and Mandarin speakers’ conceptions of time. Cogn Psychol 43:1–22

    Article  CAS  PubMed  Google Scholar 

  • Boroditsky L, Gaby A (2010) Remembrances of times East: absolute spatial representations of time in an Australian aboriginal community. Psychol Sci 21:1635–1639

    Article  PubMed  Google Scholar 

  • Boroditsky L, Ramscar M (2002) The roles of body and mind in abstract thought. Psychol Sci 13:185–188

    Article  PubMed  Google Scholar 

  • Bowerman M (1996) The origins of children’s spatial semantic categories: cognitive versus linguistic determinants. In: Gumperz J, Levinson S (eds) Rethinking linguistic relativity. Cambridge University Press, Cambridge, pp 145–176

    Google Scholar 

  • Brang D, Miller LE, McQuire M, Ramachandran VS, Coulson S (2013) Enhanced mental rotation ability in time–space synesthesia. Cogn Process 14:429–434

    Article  PubMed  Google Scholar 

  • Brannon EM, Lutz D, Cordes S (2006) The development of area discrimination and its implications for number representation in infancy. Dev Sci 9:59–64

    Article  Google Scholar 

  • Bueti D, Walsh V (2009) The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc Lond 364(1525):1831–1840

    Article  Google Scholar 

  • Buetow S (2004) New Zealand Māori quality improvement in health care: lessons from an ideal type. Int J Qual Health Care 16:417–422

    Article  PubMed  Google Scholar 

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636

    Article  CAS  PubMed  Google Scholar 

  • Cai ZG, Connell L (2012) Space–time interdependence and sensory modalities: time affects space in the hand but not in the eye. In: Miyake N, Peebles D, Cooper RP (eds) Proceedings of the 34th annual conference of the cognitive science society. Cognitive Science Society, Austin

    Google Scholar 

  • Cai ZG, Connell L (2015) Space–time interdependence: evidence against asymmetric mapping between time and space. Cognition 136:268–281

    Article  PubMed  Google Scholar 

  • Cai ZG, Connell L, Holler J (2013) Time does not flow without language: spatial distance affects temporal duration regardless of movement or direction. Psychon Bull Rev 20:973–980

    Article  PubMed  Google Scholar 

  • Cantlon JF, Platt ML, Brannon EM (2009) Beyond the number domain. Trends Cogn Sci 13:83–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Casasanto D, Boroditsky L (2008) Time in the mind: using space to think about time. Cognition 106:579–593

    Article  PubMed  Google Scholar 

  • Casasanto D, Bottini R (2010) Can mirror-reading reverse the flow of time? In: Hölscher C, Shipley TF, Olivetti Belardinelli M, Bateman JA, Newcombe NS (eds) Spatial cognition VII. Springer, Berlin, pp 335–345

    Chapter  Google Scholar 

  • Casasanto D, Bottini R (2014) Mirror reading can reverse the flow of time. J Exp Psychol Gen 143:473–479

    Article  PubMed  Google Scholar 

  • Casasanto D, Jasmin K (2012) The hands of time: temporal gestures in English speakers. Cogn Linguist 23:643–674

    Article  Google Scholar 

  • Casasanto D, Fotakopoulou O, Boroditsky L (2010) Space and time in the child’s mind: evidence for a cross-dimensional asymmetry. Cogn Sci 34:387–405

    Article  PubMed  Google Scholar 

  • Ciaramitaro VM, Buracas GT, Boynton GM (2007) Spatial and cross-modal attention alter responses to unattended sensory information in early visual and auditory human cortex. J Neurophysiol 98:2399–2413

    Article  PubMed  Google Scholar 

  • Cienki A (1998) Metaphoric gestures and some of their relations to verbal metaphoric expressions. In: Koening J-P (ed) Discourse and cognition: bridging the gap. Center for the Study of Language and Information, Stanford, pp 189–204

    Google Scholar 

  • Clark HH (1973) Space, time, semantics and the child. In: Moore TE (ed) Cognitive development and the acquisition of language. Academic Press, New York, pp 27–63

    Chapter  Google Scholar 

  • Clark A (1997) Being there: putting brain, body, and world together again. MIT Press, Cambridge

    Google Scholar 

  • Clark A (1998) Embodied, situated, and distributed cognition. In: Bechtel W, Graham G (eds) A companion to cognitive science. Wiley, Malden, pp 506–517

    Google Scholar 

  • Cohen Kadosh R, Cohen Kadosh K, Linden DEJ, Geversm W, Berger A, Henik A (2007) The brain locus of interaction between number and size: a combined functional magnetic resonance imaging and event-related potential study. J Cogn Neurosci 19:957–970

    Article  PubMed  Google Scholar 

  • Cooperrider K, Nuñez R (2009) Across time, across the body: transversal temporal gestures. Gesture 9:181–206

    Article  Google Scholar 

  • Coull JT, Vidal F, Nazarian B, Macar F (2004) Functional anatomy of the attentional modulation of time estimation. Science 303:1506–1508

    Article  CAS  PubMed  Google Scholar 

  • Danckert J, Ferber S, Pun C, Broderick C, Striemer C, Rock S (2007) Neglected time: impaired temporal perception of multisecond intervals in unilateral neglect. J Cogn Neurosci 19:1706–1720

    Article  PubMed  Google Scholar 

  • Davis B, Christie J, Rorden C (2009) Temporal order judgments activate temporal parietal junction. J Neurosci 29:3182–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Fuente J, Santiago J, Román A, Dumitrache C, Casasanto D (2014) When you think about it, your past is in front of you: how culture shapes spatial conceptions of time. Psychol Sci 25:1682–1690

    Article  PubMed  Google Scholar 

  • Dehaene S, Bosini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol Gen 122:371–396

    Article  Google Scholar 

  • DeLong AJ (1981) Phenomenological space–time: toward an experiential relativity. Science 213:681–683

    Article  CAS  PubMed  Google Scholar 

  • Dixon RMW, Blake BJ (eds) (2003) Handbook of Australian languages. Oxford University Press, Melbourne

    Google Scholar 

  • Eikmeier V, Hoppe D, Ulrich R (2015) Response mode does not modulate the space–time congruency effect: evidence for a space–time mapping at a conceptual level. Acta Physiol (Oxf) 156:162–167

    Google Scholar 

  • Elkind D (1981) Children and adolescents: interpretive essays on Jean Piaget. Oxford University Press, New York

    Google Scholar 

  • Feigenson L (2007) The equality of quantity. Trends Cogn Sci 11:185–187

    Article  PubMed  Google Scholar 

  • Fierro B, Brighina F, Oliveri M, Piazza A, LaBua V, Buffa D, Bisiach E (2000) Contra- Lateral neglect induced by right posterior parietal rTMS in healthy subjects. J Neurosci 11:1519–1521

    CAS  Google Scholar 

  • Fischer MH, Castel AD, Dodd MD, Pratt J (2003) Perceiving numbers causes spatial shifts of attention. Nat Neurosci 6:555–556

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman O, Boroditsky L (2010) Cross-cultural differences in mental representations of time: evidence from an implicit non-linguistic task. Cogn Sci 34:1430–1451

    Article  PubMed  Google Scholar 

  • Gaby A (2012) The Thaayorre think of time like they talk of space. Front Psychol 3:1–8

    Article  Google Scholar 

  • Gallistel CR (2011) Mental magnitudes. In: Dehaene S, Brannon E (eds) Space, time and number in the brain: searching for the foundations of mathematical thought. Elsevier, New York, pp 3–12

    Chapter  Google Scholar 

  • Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7:155–170

    Article  Google Scholar 

  • Gentner D, Imai M, Boroditsky L (2002) As time goes by: evidence for two systems in processing space–time metaphors. Lang Cogn Process 17:537–565

    Article  Google Scholar 

  • Gevers W, Verguts T, Reynvoet B, Caessens B, Fias W (2006) Numbers and space: a computational model of the SNARC effect. J Exp Psychol Hum Percept Perform 32:32–34

    Article  PubMed  Google Scholar 

  • Gibbs R (2006) Embodiment and cognitive science. Cambridge University Press, New York

    Google Scholar 

  • Giudice NA, Betty MR, Loomis JM (2011) Functional equivalence of spatial images from touch and vision: evidence from spatial updating in blind and sighted individuals. J Exp Psychol Learn Mem Cogn 37:621–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Haspelmath M (1997) From space to time: temporal adverbials in the world’s languages. Lincom Europa, Newcastle

    Google Scholar 

  • Hau’ofa E (2008) We are the ocean: selected works. University of Hawai’i Press, Honolulu

    Google Scholar 

  • Hayashi MJ, Kanai R, Tanabe HC, Yoshida Y, Carlson S, Walsh V, Sadato N (2013) Interaction of numerosity and time in prefrontal and parietal cortex. J Neurosci 33:883–893

    Article  CAS  PubMed  Google Scholar 

  • Holmes KJ, Lourenco SF (2013) When numbers get heavy: is the mental number line exclusively numerical? PLoS ONE 8:e58381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holyoak KJ, Thagard P (1995) Mental leaps: analogy in creative thought. MIT Press, Cambridge

    Google Scholar 

  • Hubbard EM, Piazza M, Pinel P, Dehaene S (2005) Interactions between number and space in parietal cortex. Nat Rev Neurosci 6:435–448

    Article  CAS  PubMed  Google Scholar 

  • Hunt E, Agnoli F (1991) The Whorfian hypothesis: a cognitive psychology perspective. Psychol Rev 98:377–389

    Article  Google Scholar 

  • Ishihara M, Keller PE, Rossetti Y, Prinz W (2008) Horizontal spatial representations of time: evidence for the STEARC effect. Cortex 44:454–461

    Article  PubMed  Google Scholar 

  • Jarick M, Dixon MJ, Stewart MT, Maxwell EC, Smilek D (2009) A different outlook on time: Visual and auditory month names elicit different mental vantage points for a time–space synaesthete. Cortex 45:1217–1228

    Article  PubMed  Google Scholar 

  • Johnson JA, Zatorre RJ (2005) Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cereb Cortex 15:1609–1620

    Article  PubMed  Google Scholar 

  • Karnath HO, Rorden C (2012) The anatomy of spatial neglect. Neuropsychologia 50:1010–1017

    Article  PubMed  Google Scholar 

  • Kozhevnikov M, Hegarty M (2001) A dissociation between object manipulation spatial ability and spatial orientation ability. Mem Cogn 29:745–756

    Article  CAS  Google Scholar 

  • Kozhevnikov M, Blazhenkova O, Becker M (2010) Trade-off in object versus spatial visualization abilities: restriction in the development of visual processing resources. Psychon Bull Rev 17:29–35

    Article  PubMed  Google Scholar 

  • Kranjec A (2006) Extending spatial frames of reference to temporal concepts. In: Sun R, Miyake N (eds) Proceedings of the 28th annual conference of the cognitive science society. Lawrence Erlbaum, Mahwah, pp 447–452

    Google Scholar 

  • Lacey S, Campbell C, Sathian K (2007) Vision and touch: multiple or multisensory representations of objects? Perception 36:1513–1521

    Article  PubMed  Google Scholar 

  • Lakoff G, Johnson M (1980) Metaphors we live by. Chicago University Press, Chicago

    Google Scholar 

  • Lakoff G, Johnson M (1999) Philosophy in the flesh: the embodied mind and its challenge to western thought. University of Chicago Press, Chicago

    Google Scholar 

  • Lakoff G, Kovecses Z (1987) The cognitive model of anger inherent in American English. In: Holland D, Quinn N (eds) Cultural models in language and thought. Cambridge University Press, Cambridge, pp 195–221

    Chapter  Google Scholar 

  • Laurienti PJ, Burdette JH, Wallace MT, Yen YF, Field AS, Stein BE (2002) Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci 14:420–429

    Article  PubMed  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:317–327

    Article  CAS  PubMed  Google Scholar 

  • Levinson SC (1996) Frames of reference and Molyneux’s question: cross linguistic evidence. In: Bloom P, Peterson M (eds) Language and space. MIT Press, Cambridge, pp 109–169

    Google Scholar 

  • Levinson SC (2003) Space in language and cognition: explorations in cognitive diversity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255

    Article  CAS  PubMed  Google Scholar 

  • Lourenco SF, Longo MR (2010) General magnitude representation in human infants. Psychol Sci 21:873–881

    Article  PubMed  PubMed Central  Google Scholar 

  • Macaluso E, Frith CD, Driver J (2000) Modulation of human visual cortex by crossmodal spatial attention. Science 289:1206–1208

    Article  CAS  PubMed  Google Scholar 

  • Macar F, Lejeune H, Bonnet M, Ferrara A, Pouthas V, Vidal F, Maquet P (2002) Activation of the supplementary motor area and of attentional networks during temporal processing. Exp Brain Res 142:475–485

    Article  CAS  PubMed  Google Scholar 

  • Magnani B, Oliveri M, Mangano GR, Frassinetti F (2010) The role of posterior parietal cortex in spatial representation of time: a TMS study. Behav Neurol 23:213–215

    Article  PubMed  Google Scholar 

  • McDonald JJ, Ward LM (2000) Involuntary listening aids seeing: evidence from human electrophysiology. Psychol Sci 11:167–171

    Article  CAS  PubMed  Google Scholar 

  • Merritt DJ, Casasanto D, Brannon EM (2010) Do monkeys think in metaphors? Representations of space and time in monkeys and humans. Cognition 117:191–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles LK, Betka E, Pendry LF, Macrae CN (2010a) Mapping temporal constructs: actions reveal that time is a place. Q J Exp Psychol 63:2113–2119

    Article  Google Scholar 

  • Miles LK, Nind LK, Macrae CN (2010b) Moving through time. Psychol Sci 21:222–223

    Article  PubMed  Google Scholar 

  • Moore KE (2011) Ego-perspective and field-based frames of reference: temporal meanings of FRONT in Japanese, Wolof, and Aymara. J Pragmat 43:759–776

    Article  Google Scholar 

  • Murphy G (1996) On metaphoric representation. Cognition 60:173–204

    Article  CAS  PubMed  Google Scholar 

  • Murphy G (1997) Reasons to doubt the present evidence for metaphoric representation. Cognition 62:99–108

    Article  CAS  PubMed  Google Scholar 

  • Nuerk H-C, Wood G, Willmes K (2005) The universal SNARC effect: the association between number magnitude and space is amodal. Exp Psychol 52:187–194

    Article  PubMed  Google Scholar 

  • Núñez R, Cooperrider K (2013) The tangle of space and time in human cognition. Trends Cogn Sci 17:220–229

    Article  PubMed  Google Scholar 

  • Núñez RE, Sweetser E (2006) With the future behind them: convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cogn Sci 30:401–450

    Article  PubMed  Google Scholar 

  • Ono F, Kawahara J (2007) The subjective size of visual stimuli affects the perceived duration of their presentation. Percept Psychophys 69:952–957

    Article  PubMed  Google Scholar 

  • Ono F, Kitazawa S (2009) The effect of marker size on the perception of an empty interval. Psychon Bull Rev 16:182–189

    Article  PubMed  Google Scholar 

  • Ouellet M, Santiago J, Israeli Z, Gabay S (2010) Is the future the right time? Exp Psychol 57:308–314

    Article  PubMed  Google Scholar 

  • Parkinson C, Liu S, Wheatley T (2014) A common cortical metric for spatial, temporal, and social distance. J Neurosci 34:1979–1987

    Article  CAS  PubMed  Google Scholar 

  • Piaget J (1927/1969) The child’s conception of time. Ballantine Books, New York

  • Pinel P, Piazza M, Le Bihan D, Dehaene S (2004) Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41:983–993

    Article  CAS  PubMed  Google Scholar 

  • Ruscher JB (2011) Moving forward: the effect of spatiotemporal metaphors on perceptions about grief. Soc Psychol 42:225–230

    Article  Google Scholar 

  • Rushworth MFS, Ellison A, Walsh V (2001) Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4:656–661

    Article  CAS  PubMed  Google Scholar 

  • Rymer R (2012) Vanishing voices. National Geographic, pp 50–83

  • Saj A, Fuhrman O, Vuilleumier P, Boroditsky L (2014) Patients with left spatial neglect also neglect the “left side” of time. Psychol Sci 25:207–214

    Article  PubMed  Google Scholar 

  • Santangelo V, Macaluso E (2012) Spatial attention and audiovisual processing. In: Stein BE (ed) The new handbook of multisensory processes. MIT Press, Cambridge, pp 359–370

    Google Scholar 

  • Santiago J, Lupáñez J, Pérez E, Funes MJ (2007) Time (also) flies from left to right. Psychon Bull Rev 14:512–516

    Article  PubMed  Google Scholar 

  • Sarrazin JC, Giraudo MD, Pailhous J, Bootsma RJ (2004) Dynamics of balancing space and time in memory: Tau and kappa effects revisited. J Exp Psychol Hum Percept Perform 30:411–430

    Article  PubMed  Google Scholar 

  • Sell AJ, Kaschak MP (2011) Processing time shifts affects the execution of motor responses. Brain Lang 117:39–44

    Article  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal area in humans. Science 294:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Simner J, Mayo N, Spiller MJ (2009) A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits. Cortex 45:1246–1260

    Article  PubMed  Google Scholar 

  • Singer DG, Revenson TA (1996) A Piaget primer: how a child thinks, Rev edn. Penguin Books, New York

    Google Scholar 

  • Skagerlund K, Karlsson T, Träff U (2016) Magnitude processing in the brain: An fMRI study of time, space, and numberosity as a shared cortical system. Front Hum Neurosci 10(500):1–12

    Google Scholar 

  • Slobin D (1996) From ‘‘thought and language’’ to ‘‘thinking for speaking’.’. In: Gumperz J, Levinson S (eds) Rethinking linguistic relativity. Cambridge University Press, Cambridge, pp 70–96

    Google Scholar 

  • Smilek D, Callejas A, Dixon MJ, Merikle PM (2007) Ovals of time: time–space associations in synaesthesia. Conscious Cogn 16:507–519

    Article  PubMed  Google Scholar 

  • Srinivasan M, Carey S (2010) The long and the short of it: on the nature and origin of functional overlap between representations of space and time. Cognition 116:217–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweetser E (1991) From etymology to pragmatics: metaphorical and cultural aspects of semantic structure. Cambridge University Press, Cambridge

    Google Scholar 

  • Tang J, Ward J, Butterworth B (2008) Number forms in the brain. J Cogn Neurosci 20:1547–1556

    Article  PubMed  Google Scholar 

  • Tenbrink T (2011) Reference frames of space and time in language. J Pragmat 43:704–722

    Article  Google Scholar 

  • Torralbo A, Santiago J, Lupiáñez J (2006) Flexible conceptual projection of time onto spatial frames of reference. Cogn Sci 30:745–757

    Article  PubMed  Google Scholar 

  • Traugott EC (1978) On the expression of spatiotemporal relations in language. In: Greenberg JH (ed) Universals of human language: word structure, vol 3. Stanford University Press, Stanford, pp 369–400

    Google Scholar 

  • Tversky B, Kugelmass S, Winter A (1991) Crosscultural and developmental trends in graphic productions. Cogn Psychol 23:515–557

    Article  Google Scholar 

  • Ulrich R, Eikmeier V, de la Vega I, Ruiz Fernández S, Alex-Ruf S, Maienborn C (2012) With the past behind and the future ahead: back-to-front representation of past and future sentences. Mem Cogn 40:483–495

    Article  Google Scholar 

  • Vallesi A, Binns MA, Shallice T (2008) An effect of spatial-temporal association of response codes: understanding the cognitive representations of time. Cognition 10:501–527

    Article  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7:483–488

    Article  PubMed  Google Scholar 

  • Weger UW, Pratt J (2008) Time flies like an arrow: space–time compatibility effects suggest the use of a mental time-line. Psychon Bull Rev 15:426–430

    Article  PubMed  Google Scholar 

  • Wiener M (2015) Transcranial magnetic stimulation studies of human time perception: a primer. Timing Time Percept 2:233–260

    Article  Google Scholar 

  • Wittmann M (2009) The inner experience of time. Philos Trans R Soc B Biol Sci 364(1525):1955–1967

    Article  Google Scholar 

  • Wood G, Willmes K, Nuerk HC, Fischer MH (2008) On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychol Sci Q 50:489

    Google Scholar 

  • Xuan B, Zhang D, He S, Chen X (2007) Larger stimuli are judged to last longer. J Vis 7:1–5

    Article  PubMed  Google Scholar 

  • Yamazaki Y, Hashimoto T, Iriki A (2009) The posterior parietal cortex and non-spatial cognition. F1000 Biol Rep 1:74

    PubMed  PubMed Central  Google Scholar 

  • Yu N (2012) The metaphorical orientation of time in Chinese. J Pragmat 44:1335–1354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Him Cheung.

Additional information

Handling editor: Valerio Santangelo (University of Perugia); Reviewers: Andrea Bender (University of Bergen), Serena Mastroberardino (Fondazione Santa Lucia, Rome).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choy, E.E.H., Cheung, H. Linguistic asymmetry, egocentric anchoring, and sensory modality as factors for the observed association between time and space perception. Cogn Process 18, 479–490 (2017). https://doi.org/10.1007/s10339-017-0817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-017-0817-6

Keywords

Navigation