Skip to main content
Log in

Behavioral effects of insect-resistant genetically modified crops on phytophagous and beneficial arthropods: a review

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Behavior is a main component of the survival and performance of arthropods. We have witnessed widespread adoption of insect-resistant genetically modified (IRGM) crops nowadays; however, no literature has reviewed the behavioral effects of IRGM crops on phytophagous and beneficial arthropods. In this review, we assessed the current information related to the effects of IRGM crops on arthropod behavior, mainly including locomotion (mobility, escape behavior and dispersal behavior), foraging (orientation, host plant selection/preference and feeding), mating, oviposition and other behaviors (associative learning). Almost all the studies have been conducted on Bt crops. The behavioral effects have been found in 54.2 %, 22 % and 33 % of the case studies on phytophagous arthropods, arthropod natural enemies and pollinators, respectively. Few behavioral studies have been documented on arthropod pollinators. The majority of cases reporting behavioral effects have derived from target phytophagous arthropods. Among them, locomotion and feeding behavior were the most frequently affected. For arthropod natural enemies, the cases using target prey/host in tri-trophic studies only accounted for a small proportion of behavioral effects observed on foraging behavior (host/prey selection). Overall, the effects through tri-trophic pathways on behaviors of natural enemies are limited. To conclude, while attention needs to be paid to several behavioral effects that may undermine the efficacy of IRGM crops in sustainable pest management, the behavioral effects generally do not disrupt the role of IRGM crops in achieving the goal of integrated pest management and crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasen SS, Hågvar EB (2012) Effect of potato plants expressing snowdrop lectin (GNA) on the performance and colonization behavior of the peach-potato aphid Myzus persicae. Acta agriculturae Scandinavica 62:352–361

    CAS  Google Scholar 

  • Álvarez-Alfageme F, Bigler F, Romeis J (2011) Laboratory toxicity studies demonstrating no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera:Coccinellidae): the importance of study design. Transgenic Res 20:467–479

    Article  PubMed  CAS  Google Scholar 

  • Alyokhin AV, Ferro DN (1999) Modifications in dispersal and oviposition of BT-resistant and Bt-susceptible Colorado potato beetles as a result of exposure to Bacillus thuringiensis subsp. Tenebrionis Cry3A toxin. Entomol Exp Appl 90:93–101

    Article  Google Scholar 

  • Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214

    Article  CAS  PubMed  Google Scholar 

  • Antolin MF, Strand MR (1992) Mating system of Bracon hebetor (Hymenoptera: Braconidae). Ecol Entomol 17:1–7

    Article  Google Scholar 

  • Arpaia SJ, Schmidt EU, Di Leo GM, Fiore MC (2009) Oviposition of the Colorado potato beetle (Leptinotarsa decemlineata) and natural predation on its egg masses in Bt-expressing fields. Biocontrol Sci Technol 19:971–984

    Article  Google Scholar 

  • Arpaia S, De Cristofaro A, Guerrieri E, Bossi S, Cellini F, Di Leo GM et al (2011) Foraging activity of bumblebees (Bombus terrestris L.) on Bt-expressing eggplants. Arthropod-Plant Interact 5:255–261

    Article  Google Scholar 

  • Babendreier D, Kalberer NM, Romeis J, Fluri P, Bigler F (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35:293–300

    Article  Google Scholar 

  • Babendreier D, Bigler F, Kuhlmann U (2006) Current status and constraints in the assessment of non-target effects. In Bigler et al: Environmental Impact of Invertebrates for Biological Control of Arthropods. CAB International, pp. 1–14

  • Babendreier D, Reichhart B, Romeis J, Bigler F (2008) Impact of insecticidal proteins expressed in transgenic plants on bumblebee microcolonies. Entomol Exp Appl 126:148–157

    Article  CAS  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJ, Chamberlain K, Field LM, Huttly AK et al (2006) Aphid alarm pheromone produced by GM plants affects aphid and parasitoid behavior. Proc Natl Acad Sci 103:10509–10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benelli G, Canale A (2012) Learning of visual cues in the fruit fly parasitoid Psyttalia concolor (Szepligeti) (Hymenoptera: Braconidae). Biocontrol 57:767–777

    Article  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New York

    Book  Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G, Vinuela E, Zappala L, Desneux N (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2006) Global impact of biotech cops: Socio-economic and environmental effects in the first 10 years of commercial use. AgBioForum 9:139–151

    Google Scholar 

  • Canale A, Geri S, Benelli G (2014) Associative learning for host-induced fruit volatiles in Psyttalia concolor (Hymenoptera: Braconidae), a koinobiont parasitoid of tephritid flies. Bull Entomol Res 104:774–780

    Article  CAS  PubMed  Google Scholar 

  • Carriere Y, Tabashnik BE (2001) Reversing insect adaptation to transgenic insecticidal plants. Proc R Soc B—Biol Sci 268:1475–1480

    Article  CAS  Google Scholar 

  • Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH et al (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Mang G, Zhang QF, Lin YJ (2008) Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae). J Econ Entomol 101:182–189

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388

    Article  CAS  PubMed  Google Scholar 

  • Chougule NP, Bonning BC (2012) Toxins for transgenic resistance to Hemipteran pests. Toxins 4:405–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark PL, Vaughn TYT, Meinke LJ, Molina-Ochoa J, Foster JE (2006) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) larval feeding behavior on transgenic maize (MON 863) and its isoline. J Econ Entomol 99:722–727

    Article  PubMed  Google Scholar 

  • Couty A, Clark SJ, Poppy GM (2001) Are fecundity and longevity of female Aphelinus abdominalis affected by development in GNA-dosed Macrosiphum euphorbiae? Physiol Entomol 26:287–293

    Article  CAS  Google Scholar 

  • Cuong NL, Cohen MB (2003) Mating and dispersal behavior of Scirpophaga incertulas and Chilo suppressalis (Lepidoptera: Pyralidae) in relation to resistance management for rice transformed with Bacillus thuringiensis toxin genes. Int J Pest Manag 49:275–279

    Article  CAS  Google Scholar 

  • Dai PL, Zhou W, Zhang J, Cui HJ, Wang Q, Jiang WY et al (2012a) Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica. Ecotoxicol Environ Saf 79:232–237

    Article  CAS  PubMed  Google Scholar 

  • Dai PL, Zhou W, Zhang J, Jiang WY, Wang Q, Cui HJ et al (2012b) The effects of Bt Cry1Ah toxin on worker honeybees (Apis mellifera ligustica and Apis cerana cerana). Apidologie 43:384–391

    Article  CAS  Google Scholar 

  • Dai PL, Zhou W, Zhang J, Lang ZH, Zhou T, Wang Q et al (2015) Effects of Bt cry1Ah corn pollen on immature workers of Apis cerana cerana. J Apicult Res 54:72–76

    Article  Google Scholar 

  • De Boer JG, Dicke M (2006) Olfactory learning by predatory arthropods. Anim Biol 56:143–155

    Article  Google Scholar 

  • De Boer JG, Snoeren TAL, Dicke M (2005) Predatory mites learn to discriminate between plant volatiles induced by prey and nonprey herbivores. Anim Behav 69:869–879

    Article  Google Scholar 

  • Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybee under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419

    Article  CAS  PubMed  Google Scholar 

  • Decourtye A, Mader E, Desneux N (2010) Landscape scale enhancement of floral resources for honey bees in agroecosystems. Apidologie 41:264–277

    Article  Google Scholar 

  • Decourtye A, Henry M, Desneux N (2013) Overhaul pesticide testing on bees. Nature 497:188

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Bernal JS (2010) Genetically modified crops deserve greater ecotoxicological scrutiny. Ecotoxicology 19:1642–1644

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Ramirez-Romero R, Bokonon-Ganta AH, Bernal JS (2010) Attraction of the parasitoid Cotesia marginiventris to host frass is affected by GM maize. Ecotoxicology 19:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Roger Blahnik, Delebecque CJ, Heimpel GE (2012) Host phylogeny and specialization in parasitoids. Ecol Lett 15:452–460

    Article  Google Scholar 

  • Desouhant E, Navel S, Foubert E, Fischbein D, Théry M, Bernstein C (2010) What matters in the associative learning of visual cues in foraging parasitoid wasps: colour or brightness? Anim Cogn 13:535–543

    Article  PubMed  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Schütte C, Dijkman H (2000) Change in behavioral response to herbivore-induced plant volatiles in a predatory mite population. J Chem Ecol 26:1497–1514

    Article  CAS  Google Scholar 

  • Dively GP, Embrey MS, Kamel A, Hawthorne DJ, Pettis JS (2015) Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 10(3):e0118748. doi:10.1371/journal.pone.0118748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dogan EB, Berry RE, Reed GL, Rossignol PA (1996) Biological parameters of convergent lady beetles (Coleoptera: Coccinellidae) feeding on aphids (Homoptera: Aphididae) on GM potato. J Econ Entomol 89:1105–1108

    Article  Google Scholar 

  • Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One 3(1):e1415. doi:10.1371/journal.pone.0001415

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan JJ, Lundgren JG, Naranjo S, Marvier M (2010) Extrapolating non-target risk of Bt crops from laboratory to field. Biol Lett 6:74–77

    Article  PubMed  Google Scholar 

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    Article  CAS  PubMed  Google Scholar 

  • Dutra CC, Koch RL, Burkness EC, Meissle M, Romeis J, Hutchison WD et al (2012) Harmonia axyridis (Coleoptera: Coccinellidae) exhibits no preference between Bt and on-Bt maize fed Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS One 7(9):e44867. doi:10.1371/journal.pone.0044867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447

    Article  Google Scholar 

  • EFSA (2010) Guidance on the environmental risk assessment of genetically modified Plants. EFSA J 8:1879

    Article  Google Scholar 

  • EFSA (2011) Scientific Opinion updating the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize 1507 for cultivation. EFSA J 9:2429

    Article  Google Scholar 

  • EFSA (2013) EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J 11:3295

    Article  CAS  Google Scholar 

  • Esteves AB, de Oliveira JV, Torres JB, Gondim MGC (2010) Compared biology and behavior of Tetranychus urticae Koch (Acari: Tetranychidae) and Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae) on Bollgard (TM) and non-Transgenic Isoline Cotton. Neotropical Entomol 39:338–344

    Article  Google Scholar 

  • Fauvergue X, Fleury F, Lemaitre C, Allemand R (1999) Parasitoid mating structures when hosts are patchily distributed: field and laboratory experiments with Leptopilina boulardi and L. heterotoma. Oikos 86:344–356

    Article  Google Scholar 

  • Fernandes FS, Ramalho FS, Nascimento J, Malaquias JB, Nascimento ARB, Silva CAD et al (2012) Within-plants distribution of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae) in Bt and non-Bt cotton fields. Bull Entomol Res 102:79–87

    Article  CAS  PubMed  Google Scholar 

  • Ferry N, Mulligan EA, Stewart CN, Tabashnik BE, Port GR Gatehouse AMR (2006) Prey-mediated effects of GM canola on a beneficial, non-target, carabid beetle. Transgenic Res 35:501–514

    Article  CAS  Google Scholar 

  • Ferry N, Mulligan EA, Majerus MEN, Gatehouse AMR (2007) Bitrophic and tritrophic effects of Bt Cry3A GM potato on beneficial, non-target, beetles. Transgenic Res 16:795–812

    Article  CAS  PubMed  Google Scholar 

  • García M, Ortego F, Castañera P, Farinós GP (2010) Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria. Biol Control 55:225–233

    Article  CAS  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629. doi:10.1371/journal.pone.0022629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JA, Mason CE, Pesek J (2010) Dispersal and movement behavior of neonate European corn borer (Lepidoptera: Crambidae) on non-Bt and Transgenic Bt corn. J Econ Entomol 103:331–339

    Article  PubMed  Google Scholar 

  • Gore J, Leonard BR, Church GE, Cook DR (2002a) Behavior of bollworm (Lepidoptera: Noctuidae) larvae on genetically engineered cotton. J Econ Entomol 95:763–769

    Article  CAS  PubMed  Google Scholar 

  • Gore J, Leonard R, Church G (2002b) Bollworm larval behavior on Bollgard cotton: findings may change scouting procedures. Louisiana Agric 45:7–9

    Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  CAS  PubMed  Google Scholar 

  • Greggers U, Menzel R (1993) Memory dynamics and foraging strategies of honeybees. Behav Ecol Sociobiol 32:17–29

    Article  Google Scholar 

  • Hagenbucher S, Wäckers FL, Wettestein FE, Olson DM, Ruberson JR, Romeis J (2013) Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids. Proc R Soc B 280:20130042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hågvar EB, Hofsvang T (1991) Aphid parasitoids (Hymenoptera, Aphidiidae): biology, host selection and use in biological control. Biocontrol News Inf 12:13–41

    Google Scholar 

  • Halcomb JL, Benedict JH, Cook B, Ring DR, Correa JC (2000) Feeding behavior of bollworm and tobacco budworm (Lepidoptera: Noctuidae) larvae in mixed stands of nontransgenic and transgenic cotton expressing an intsecticidal protein. J Econ Entomol 93:1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010a) Use of an innovative T-tube maze assay and the Proboscis Extension Response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19:1612–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010b) Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 19:1452–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han P, Niu CY, Biondi A, Desneux N (2012) Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera Apidae)? Ecotoxicology 21:2214–2221

    Article  CAS  PubMed  Google Scholar 

  • Han P, Niu CY, Desneux N (2014) Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in Central China. PLoS One 9(8):e102980. doi:10.1371/journal.pone.0102980

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen Jesse LC, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia 125:241–248

    Article  CAS  PubMed  Google Scholar 

  • Hardke JT, Leonard BR, Temple JH (2012) Fall armyworm oviposition on cotton plants expressing wide strike(TM) Bollgar (R), and Bollgard II (R) Cry proteins. Southwest Entomol 37:295–303

    Article  Google Scholar 

  • Harwood JD, Desneux N, Yoo HYS, Rowley D, Greenstone MH, Obrycki JJ et al (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Mol Ecol 16:4390–4400

    Article  CAS  PubMed  Google Scholar 

  • Haslberger AG (2003) Codex guidelines for GM foods include the analysis of unintended effects. Nat Biotechnol 21:739–741

    Article  CAS  PubMed  Google Scholar 

  • Haydak MH (1970) Honey bee nutrition. Annu Rev Entomol 15:143–156

    Article  Google Scholar 

  • Heimpel GE, Casas J (2007) Parasitoid foraging and oviposition behavior in the field. In: Wajnberg E, Bernstein C, van Alphen J (eds) Behavioral ecology of insects parasitoids, from theoretical approaches to field applications. Wiley, New York, pp 51–70

    Google Scholar 

  • Hellmich RL, Siegfried BD, Sears MK, Stanley-Horn DE, Daniels MJ, Mattila HR, Spencer T, Bidne KG, Lewis LC (2001) Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen. Proc Natl Acad Sci 98:11925–11930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriksma HP, Hartel S, Steffan-Dewenter I (2011) Testing pollen of single and stacked insect-resistant Bt-maize on in vitro reared honey bee larvae. PLoS One 6(12):e28174. doi:10.1371/journal.pone.0028174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487

    Article  Google Scholar 

  • Hilbeck A, McMillan JM, Meier M, Humbel A, Schlaepfer-Miller J, Trtikova M (2012) A controversy re-visited: is the coccinellid Adalia bipunctata adversely affected by Bt toxins? Environ Sci Europe 24:10

    Article  CAS  Google Scholar 

  • Himanen SJ, Nerg A, Nissinen A, Pinto DM, Stewart CNJr, Poppy GM et al (2009) Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol 181:174–186

    Article  CAS  PubMed  Google Scholar 

  • Jackson RE, Gore J, Abel C (2010) Bollworm (Lepidoptera: Noctuidae) behavior on transgenic cotton expressing Cry1Ac and Cry1F proteins. J Entomol Sci 45:252–261

    Article  Google Scholar 

  • Jallow MFA, Hoy CW (2007) Indirect selection for increased susceptibility to permethrin in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 100:526–533

    Article  CAS  PubMed  Google Scholar 

  • James (2014) Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA Brief No. 49. ISAAA, Ithaca

  • Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity-USA. Apidologie 41:312–331

    Article  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kumar H (2004) Orientation, feeding and ovipositional behavior of Diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), on transgenic cabbage expressing Cry1Ab toxin of Bacillus thuringiensis (Berliner). Environ Entomol 33:1025–1031

    Article  CAS  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Liu TX, Greenberg SM (2009) Feeding, oviposition and survival of Liriomyza trifolii (Diptera: Agromyzidae) on Bt and non-Bt cottons. Bull Entomol Res 99:253–261

    Article  CAS  PubMed  Google Scholar 

  • Lewis WJ, Tumlinson JH (1988) Host detection by chemically mediated associative learning in a parasitoid wasp. Nature 331:257–259

    Article  Google Scholar 

  • Li YH, Romeis J (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biol Control 53:337–344

    Article  CAS  Google Scholar 

  • Li YX, Greenberg SM, Liu TX (2007) Orientation behavior, development and survival of Trichoplusia ni (Lepidoptera: Noctuidae) larvae on cotton expressing Cry1Ac and Cry2Ab and conventional cotton. J Insect Behav 20:473–488

    Article  Google Scholar 

  • Li GP, Feng HQ, Chen PY, Wu SY, Liu B, Qiu F (2010) Effects of transgenic Bt cotton on the population density, oviposition behavior, development, and reproduction of a nontarget pest, Adelphocoris suturalis (Hemiptera: Miridae). Environ Entomol 39:1378–1387

    Article  PubMed  Google Scholar 

  • Li K, Tian J, Wang QX, Chen Q, Chen M, Wang H et al (2011) Application of a novel method PCR-ligase detection reaction for tracking predator-prey trophic links in insect-resistant GM rice ecosystem. Ecotoxicology 20:2090–2100

    Article  CAS  PubMed  Google Scholar 

  • Lima MAP, Pires CSS, Guedes RNC, Nakasu EYT, Lara MS, Fontes EMG et al (2011) Does Cry1Ac Bt-toxin impair development of worker larvae of Africanized honey bee? J Appl Entomol 135:415–422

    Article  CAS  Google Scholar 

  • Liu XD, Zhai BP, Zhang XX, Zong JM (2005) Impact of transgenic cotton plants on a non-target pest, Aphis gossypii Glover. Ecol Entomol 30:307–315

    Article  Google Scholar 

  • Liu B, Shu C, Xue K, Zhou KX, Li XG, Liu DD et al (2009) The oral toxicity of the transgenic Bt-CpTI cotton pollen to honey bees (Apis mellifera). Ecotoxicol Environ Saf 72:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Liu XX, Chen M, Onstad D, Roush R, Shelton AM (2011) Effect of Bt broccoli and resistant genotype of Plutella xylostella (Lepidoptera: Plutellidae) on development and host acceptance of the parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Transgenic Res 20:887–897

    Article  PubMed  CAS  Google Scholar 

  • Liu QS, Romeis J, Yu HL, Zhang YJ, Li YH, Peng YF (2015) Bt rice does not disrupt the host-searching behavior of the parasitoid Cotesia chilonis. Sci Rep 5:15295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loivamäki M, Mumm R, Dicke M, Schnitzler JP (2008) Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proc Natl Acad Sci 105:17430–17435

    Article  PubMed  PubMed Central  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Downes S, Wilson L, Gregg P, Knight K, Kauter G et al (2011) Preferences of field bollworm larvae for cotton plant structures: impact of Bt and history of survival on Bt crops. Entomol Exp Appl 140:17–27

    Article  Google Scholar 

  • Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  CAS  PubMed  Google Scholar 

  • Ludy C, Lang A (2006a) Bt maize pollen exposure and impact on the garden spider, Araneus diadematus. Entomol Exp Appl 118:145–156

    Article  CAS  Google Scholar 

  • Ludy C, Lang A (2006b) A 3-year field-scale monitoring of foliage-dwelling spiders (Araneae) in transgenic Bt maize fields and adjacent field margins. Biol Control 38:314–324

    Article  Google Scholar 

  • Lundgren JG, Wiedenmann RN (2002) Coleopteran-specific Cry3Bb toxin from transgenic corn pollen does not affect the fitness of a nontarget species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Environ Entomol 31:1213–1218

    Article  CAS  Google Scholar 

  • Lundgren JG, Wiedenmann RN (2005) Tritrophic interactions among Bt (Cry3Bb1) corn, aphid prey, and the predator Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol 34:1621–1625

    Article  Google Scholar 

  • Lundgren JG, Fergen JK, Riedell WE (2008) The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug, Orius insidiosus. Anim Behav 75:1495–1502

    Article  Google Scholar 

  • Lundgren JG, Gassmann AJ, Bernal J, Duan JJ, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Prot 28:1017–1030

    Article  Google Scholar 

  • Luong TTA, Downes SJ, Cribb B, Perkins LE, Zalucki MP (2016) Oviposition site selection and survival of susceptible and resistant larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) on Bt and non-Bt cotton. Bull Entomol Res. doi:10.1017/S0007485316000328

    PubMed  Google Scholar 

  • Lόpez C, Hernάndez-Escareṅo G, Eizaguirre M, Albajes R (2013) Antixenosis and larval and adult dispersal in the Mediterranean corn borer, Sesamia nonagrioides, in relation to Bt maize. Entomol Exp Appl 149:256–264

    Article  CAS  Google Scholar 

  • Lövei GL, Arpaia S (2004) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomol Exp Appl 114:1–14

    Article  Google Scholar 

  • Lövei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306

    Article  PubMed  Google Scholar 

  • Mallet J, Porter P (1992) Preventing insect adaptation to insect-resistant crops: are seed mixes or refuge the best stratege? Proc R Soc Lond B Biol 250:165–169

    Article  Google Scholar 

  • Malone LA, Burgess EPJ (2009) Impact of genetically modified crops on pollinators. In: Gatehouse AMR, Ferry N (eds) Environmental Impact of Genetically Modified Crops. CAB International, Wallingford, pp 199–222

    Chapter  Google Scholar 

  • Malone LA, Pham-Delègue MH (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32:287–304

    Article  CAS  Google Scholar 

  • Malone LA, Burgess EPJ, Gatehouse HS, Voisey CR, Tregidga EL, Philip B (2001) Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie 32:57–68

    Article  CAS  Google Scholar 

  • Marquardt PT, Kruple CH (2009) Dispersal and mating behavior of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ Entomol 38:176–182

    Article  PubMed  Google Scholar 

  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477

    Article  CAS  PubMed  Google Scholar 

  • Meier M, Hilbeck A (2001) Influence of transgenic Bacillus thuringiensis corn-fed prey on prey preference of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Basic Appl Ecol 2:35–44

    Article  CAS  Google Scholar 

  • Meiners T, Wackers F, Lewis WJ (2003) Associative learning of complex odours in parasitoid host location. Chem Senses 28:231–236

    Article  CAS  PubMed  Google Scholar 

  • Meissle M, Romeis J (2009) The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotech J 7:645–656

    Article  CAS  Google Scholar 

  • Meissle M, Vojtech E, Poppy GM (2005) Effects of Bt maize-fed prey on the generalist predator Poecilus cupretis L. (Coleoptera: Carabidae). Transgenic Res 14:123–132

    Article  CAS  PubMed  Google Scholar 

  • Men X, Ge F, Yardim EN, Parajulee MN (2005) Behavioral response of Helicoverpa armigera (Lepidoptera: Noctuidae) to cotton with and without expression of the Cry1Ac δ-Endotoxin protein of Bacillus thuringiensis Berlier. J Insect Behav 18:33–50

    Article  Google Scholar 

  • Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G (2009) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207–215

    Article  CAS  Google Scholar 

  • Mommaerts V, Jans K, Smagghe G (2010) Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumblebees (Bombus terrestris). Pest Manag Sci 66:520–525

    Article  CAS  PubMed  Google Scholar 

  • Moraes MCB, Laumann RA, Aquino MFS, Paula DP, Borges M (2011) Effect of Bt genetic engineering on indirect defense in cotton via a tritrophic interaction. Transgenic Res 20:99–107

    Article  CAS  PubMed  Google Scholar 

  • Moser SE, Harwood JD, Obrycki JJ (2008) Larval feeding on Bt hybrid and non-Bt corn seedlings by Harmonia axyridis (Coleoptera: Coccinellidae) and Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol 37:525–533

  • Naranjo (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 (4), No. 011

  • Niu L, Ma Y, Mannakkara A, Zhao Y, Ma WH, Lei CL (2013) Impact of single and stacked insect-resistant Bt-cotton on the honey bee and silkworm. PLoS One 9:e72988. doi:10.1371/journal.pone.0072988

    Article  CAS  Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292

    Article  PubMed  CAS  Google Scholar 

  • Obonyo DN, Songa JM, Oyieke FA, Nyamasyo GHN, Mugo SN (2008) Bt-transgenic maize does not deter oviposition by two important African cereal stem borers, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Sesamia calamistis Hampson. J Appl Biosci 10:424–433

    Google Scholar 

  • Obrist LB, Klein H, Dutton A, Bigler F (2005) Effects of Bt maize on Frankliniella tenuicornis and exposure of thrips predators to prey-mediated Bt toxin. Entomol Exp Appl 115:409–416

    Article  Google Scholar 

  • Obrist LB, Klein H, Dutton A, Bigler F (2006) Assessing the effects of Bt maize on the predatory mite Neoseiulus cucumeris. Exp Appl Acarol 38:125–139

    Article  PubMed  Google Scholar 

  • Onstad DW (2008) Major issues in insect resistance management. In: Onstad DW (ed) Insect resistance management: biology, economics and prediction. Academic, San Diego, pp 1–16

    Chapter  Google Scholar 

  • Onstad DW, Liu X, Chen M, Roush R, Shelton AM (2013) Modeling the integration of parasitoid, insecticide, and transgenic insecticidal crop for the long-term control of an insect pest. J Econ Entomol 106:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Orr DB, Landis DA (1997) Oviposition of European corn borer (Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. J Econ Entomol 90:905–909

    Article  Google Scholar 

  • Pareja M, Mohib A, Birkett MA, Dufour S, Glinwood RT (2009) Multivariate statistics coupled to generalized linear models reveal complex use of chemicals cues by parasitoid. Anim Behav 77:901–909

    Article  Google Scholar 

  • Park JR, McFarlane I, Phipps RH, Ceddia G (2011) The role of transgenic crops in sustainable development. Plant Biotechnol J 9:2–21

    Article  Google Scholar 

  • Peterson JA, Lundgren JG, Harwood JD (2011) Interactions of transgenic Bacillus thuringiensis insecticidal crops with spiders (Aranae). J Arachnol 39:1–21

    Article  Google Scholar 

  • Petzold-Maxwell JL, Cibils-Stewart X, French BW, Gassmann AJ (2012) Adaptation by Western corn rootworm (Coleoptera: Chrysomelidae) to Bt maize: inheritance, fitness, costs, and feeding preference. J Econ Entomol 105:1407–1418

    Article  PubMed  Google Scholar 

  • Pham-Delègue MH, Girard C, Le Metayer M, Picard-Nizou AL, Hennequet C, Pons O et al (2000) Long-term effects of soybean protease inhibitors on digestive enzymes, survival and learning abilities of honeybees. Entomol Exp Appl 95:21–29

    Article  Google Scholar 

  • Picard-Nizou AL, Pham-Delègue HM, Kerguelen V, Douault P, Marilleau R, Olsen L et al (1995) Foraging behaviour of honey bees (Apis mellifera L.) on transgenic oilseed rape (Brassica napus L. var. oleifera). Transgenic Res 4:270–276

    Article  CAS  Google Scholar 

  • Picard-Nizou AL, Grison R, Olsen L, Pioche C, Arnold G, Pham-Delègue HM (1997) Impact of proteins used in plant genetic engineering: toxicity and behavioral study in the honeybee. J Econ Entomol 90:1710–1716

    Article  CAS  Google Scholar 

  • Pierre J, Marsault D, Genecque E, Renard M, Champolivier J, Pham-Delègue MH (2003) Effects of herbicide-tolerant transgenic oilseed rape genotypes on honey bees and other pollinating insects under field conditions. Entomol Exp Appl 108:159–168

    Article  Google Scholar 

  • Pilcher CD, Obrycki JJ, Rice ME, Lewis LC (1997) Preimaginal development, survival, and field abundance of insect predators on GM Bacillus thuringiensis corn. Environ Entomol 26:446–454

    Article  Google Scholar 

  • Prager SM, Martini X, Guvvala H, Nansen C, Lundgren J (2014) Spider mite infestations reduce Bacillus thuringiensis toxin concentration in corn leaves and predators avoid spider mites that have fed on Bacillus thuringiensis corn. Ann Appl Biol 165:108–116

  • Prasifka PL, Hellmich RL, Prasifka JR, Lewis LC (2007) Effects of Cry1Ab-expressing corn anthers on the movement of monarch butterfly larvae. Environ Entomol 36:228–233

    Article  PubMed  Google Scholar 

  • Prütz G, Dettner K (2004) Effect of Bt corn leaf suspension on food consumption by Chilo partellus and life history parameters of its parasitoid Cotesia flavipes under laboratory conditions. Entomol Exp Appl 111:179–187

    Article  Google Scholar 

  • Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG, Winfree R et al (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci 113:146–151

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran S, Buntin GD, All JN, Raymer PL, Stewart CN (1998a) Movement and survival of diamondback moth (Lepidoptera: Plutellidae) larvae in mixtures of nontransgenic and transgenic canola containing a cryIA (c) gene of Bacillus thuringiensis. Environ Entomol 27:649–656

    Article  Google Scholar 

  • Ramachandran S, Buntin GD, All JN, Tabashnik BE, Raymer PL, Adang MJ et al (1998b) Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis Toxin. J Econ Entomol 91:1239–1244

    Article  Google Scholar 

  • Ramalho FS, Pachú JKS, Lira ACS, Malaquias JB, Zanuncio JC, Fernandes FS (2014) Feeding and dispersal behavior of the cotton leafworm, Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), on Bt and non-Bt cotton: implications for evolution and resistance management. PLoS One 9(11):e111588. doi:10.1371/journal.pone.0111588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez-Romero R, Josette C, Pham-Delègue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36:601–611

    Article  CAS  Google Scholar 

  • Ramirez-Romero R, Bernal JS, Chaufaux J, Kaiser L (2007) Impact assessment of Bt-maize on a moth parasitoid, Cotesia marginiventris (Hymenoptera: Braconidae), via host exposure to purified Cry1Ab protein or Bt-plants. Crop Prot 26:953–962

    Article  CAS  Google Scholar 

  • Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delègue MH (2008a) Does Cry1Ab protein affect learning performance of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol Environ Saf 70:327–333

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Romero R, Desneux N, Chaufaux J, Kaiser L (2008b) Bt-maize effects on biological parameters of the non-target aphid Sitobion avenae (Homoptera: Aphididae) and Cry1Ab toxin detection. Pesticide Biochem Phys 91:110–115

    Article  CAS  Google Scholar 

  • Rao NS, Rao PA (2008) Behavioral and physiological effects of Bt cotton on cotton bollworm, Helicoverpa armigera (Hub.). J Entomol Res 32:273–277

    Google Scholar 

  • Raybould A (2006) Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops. Environ Biosaf Res 5:119–125

    Article  Google Scholar 

  • Raybould A, Stacey D, Vlachos D, Graser G, Li X, Joseph R (2007) Non-target organisms risk assessment of MIR604 maize expressing Cry3A for control of corn rootworms. J Appl Entomol 131:391–399

    Article  CAS  Google Scholar 

  • Razze JM, Mason CE (2012) Dispersal behavior of neonate European corn borer (Lepidoptera: Crambidae) on Bt corn. J Econ Entomol 105:1214–1223

    Article  CAS  PubMed  Google Scholar 

  • Riddick EW, Barbosa P (1998) Impact of Cry3A-intoxicated Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and pollen on consumption, development, and fecundity of Coleomegilla maculata (Coleoptera: Coccinellidae). Ann Entomol Soc Am 91:303–307

    Article  Google Scholar 

  • Rojas RT, Gino FM, Roberto SH (2010) Spatial distribution of Aphis gossypii (Glover) (Hemiptera: Aphididae) and Bemisia tabaci (Gennadius) biotype B (Hemiptera, Aleyrodidae) on Bt and non-Bt cotton. Rev Bras Entomol 54:136–143

    Article  Google Scholar 

  • Romeis J, Meissle M (2011) Non-target risk assessment of Bt crops—Cry protein uptake by aphids. J Appl Eotomol 135:1–6

    Article  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) GM crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MMC, Hartley SE et al (2008) Assessment of risk of insect-resistant transgenic crops to non-target arthropods. Nat Biotechnol 26:203–208

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Hellmich RL, Candolfi MP, Carstens K, De Schrijver A, Gatehouse AMR et al (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Álvarez-Alfageme F, Bigler F et al (2012) Putative effects of Cry1Ab to larvae of Adalia bipunctata—reply to Hilbeck et al. (2012). Environ Sci Europe 24:18

    Article  CAS  Google Scholar 

  • Rondeau G, Sánchez-Bayo F, Tennekes HA, Decourtye A, Ramírez-Romero R, Desneux N (2014) Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci Rep 4:5566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose RI (2007) White paper on tier-based testing for the effects of proteinaceous insecticidal plant-incorporated protectants on non-target invertebrates for regulatory risk assessment. USDA-APHIS and US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Rovenská GZ, Zemek R (2006) Host plant preference of aphids, thrips and spider mites on GNA-expressing and control potatoes. Phytoparasitica 34:139–148

    Article  Google Scholar 

  • Rovenská GZ, Zemek R, Schmidt JEU, Hilbeck A (2005) Altered host plant preference of Tetranychus urticae and prey preference of its predator Phytoseiulus persimilis (Acari: Tetranychidae, Phytoseiidae) on transgenic Cry3Bb-eggplants. Biol Control 33:293–300

    Article  Google Scholar 

  • Sanders CJ, Pell JK, Poppy GM, Raybould A, Garcia-Alonso M, Schuler TH (2007) Host-plant mediated effects of GM maize on the insect parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae). Biol Control 40:362–369

    Article  Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Article  Google Scholar 

  • Schone H, Strausfeld C (1984) Spatial orientation, the spatial control of behavior in animals and man. University Press, New Jersey

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Schroder R, Wurm L, Varama M, Meiners T, Hilker M (2008) Unusual mechanisms involved in learning of oviposition-induced host plant odours in an egg parasitoid? Anim Behav 75:1423–1430

    Article  Google Scholar 

  • Schuler TH, Potting RPJ, Denholm I, Poppy GM (1999) Parasitoid behaviour and Bt plants. Nature 400:825–826

    Article  CAS  PubMed  Google Scholar 

  • Schuler TH, Potting RPJ, Denholm I, Clark SJ, Clark AJ, Stewart CN et al (2003) Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Transgenic Res 12:351–361

    Article  CAS  PubMed  Google Scholar 

  • Seagraves MP, Riedell WE, Lundgren JG (2011) Oviposition preference for water-stressed plants in Orius insidiosus (Hemiptera: Anthocoridae). J Insect Behav 24:132–143

    Article  Google Scholar 

  • Setamou M, Bernal JS, Legaspi JC, Mirkov TE (2002) Parasitism and location of sugarcane borer (Lepidoptera: Pyralidae) by Cotesia flavipes (Hymenoptera: Braconidae) on transgenic and conventional sugarcane. Environ Entomol 31:1219–1225

    Article  Google Scholar 

  • Shapiro JP, Ferkovich SM (2006) Oviposition and isolation of viable eggs from Orius insidiosus in aparafilm and water substrate: comparison with green beans and use in enzyme-linked immunosorbant assay. Ann Entomol Soc Am 99:586–591

    Article  Google Scholar 

  • Spencer JL, Mabry TR, Vaughn TT (2003) Use of transgenic plants to measure insect herbivore movement. J Econ Entomol 96:1738–1749

    Article  PubMed  Google Scholar 

  • Stapel JO, Waters DJ, Ruberson JR, Lewis WJ (1998) Development and behavior of Spodoptera exigua (Lepidoptera: noctuidae) larvae in choice tests with food substrates containing toxins of Bacillus thuringiensis. Biol Control 11:29–37

    Article  Google Scholar 

  • Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW et al (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038

    Article  PubMed  Google Scholar 

  • Sun X, Zhou W, Liu H, Zhang A, Ai CR, Zhou SS et al (2013) Transgenic Bt rice does not challenge host preference of the target pest of rice leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). PLoS One 8(11):e79032. doi:10.1371/journal.pone.0079032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy SVSG, Sharma HC, Subbaratman GV, Vijay MP (2008) Ovipositional and feeding preferences of Helicoverpa armigera towards putative transgenic and non-transgenic pideonpeas. Resistant Pest Manag Newslett 17:50–52

    Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Carrière Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT et al (2003) Insect resistance to transgenic Bacillus thuringiensis crops: lessons from the laboratory and field. J Econ Entomol 96:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Telléz-Rodríguez P, Raymond B, Morán-Bertot I, Rodríguez-Cabrera L, Wright DJ, Borroto CG et al (2014) Strong oviposition preference for Bt over non-Bt maize in Spodoptera frugiperda and its implications for the evolution of resistance. BMC Biol 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson HM (2003) Behavioural effects of pesticides in bees-their potential for use in risk assessment. Ecotoxicology 12:317–330

    Article  CAS  PubMed  Google Scholar 

  • Toft S (1999) Prey choice and spider fitness. J Arachnol 27:301–307

    Google Scholar 

  • Tomov BW, Bernal JS, Vinson SB (2003) Impacts of transgenic sugarcane expressing GNA lectin on parasitism of Mexican rice borer by Parallorhogas pyralophagus (Marsh) (Hymenoptera: Braconidae). Environ Entomol 32:866–872

    Article  Google Scholar 

  • Torres JB, Ruberson JR (2006) Interactions of Bt-cotton and the omnivorous big-eyed bug Geocoris punctipes (Say), a key predator in cotton fields. Biol Control 39:47–57

    Article  Google Scholar 

  • Torres JA, Ruberson JR (2008) Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Res 17:345–354

    Article  CAS  PubMed  Google Scholar 

  • Torres JB, Ruberson JR, Adang MJ (2006) Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: a tritrophic analysis. Agric Forest Entomol 8:191–202

    Article  Google Scholar 

  • Toschki A, Hothorn LA, Ross-Nickoll M (2007) Effects of cultivation of genetically modified Bt maize on epigeic arthropods (Araneae: Carabidae). Environ Entomol 36:967–981

    Article  CAS  PubMed  Google Scholar 

  • Tschenn J, Losey JE, Jesse LH, Obrycki JJ, Hufbauer R (2001) Effects of corn plants and corn pollen on monarch butterfly (Lepidoptera: Danaidae) oviposition behavior. Environ Entomol 30:495–500

    Article  Google Scholar 

  • Turlings TCJ, Jeanbourquin PM, Held M, Degen T (2005) Evaluating the induced-odour emission of a Bt maize and its attractiveness to parasitic wasps. Transgenic Res 14:807–816

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg J, Van Wik A (2007) The effect of Bt maize on Sesamia calamistis in South Africa. Entomol Exp Appl 122:45–51

    Article  Google Scholar 

  • Vet LEM, Godfray HCJ (2007) Multitrophic interactions and parasitoid behavioural ecology. In: Wajnberg E, Bernstein C, Van Alphen J (eds) Behavioral ecology of insect parasitoids from theoretical approaches to field applications. Blackwell, Oxford, pp 231–252

    Google Scholar 

  • Vet LEM, Groenewold AW (1990) Semiochemicals and learning in parasitoids. J Chem Ecol 16:3119–3135

    Article  CAS  PubMed  Google Scholar 

  • Wajnberg E, Bernstein C, van Alphen J (2007) Behavioral ecology of insects parasitoids, from theoretical approaches to field applications. Wiley, New York

    Google Scholar 

  • Walker GP, Cameron PJ, MacDonald FM, Madhusudhan VV, Wallace AR (2007) Impacts of Bacillus thuringiensis toxins on parasitoids (Hymenoptera: Braconidae) of Spodoptera litura and Helicoverpa armigera (Lepidoptera: Noctuidae). Biol Control 40:142–151

    Article  CAS  Google Scholar 

  • Wan P, Huang YX, Wu HH, Huang MS, Cong SB, Tabashnik BE et al (2012) Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. PLoS One 7(1):e29975. doi:10.1371/journal.pone.0029975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Whitehouse MEA, Wilson LJ, Constable GA (2007) Target and non-target effects on the invertebrate community of Vip cotton, a new insecticidal transgenic. Aust J Agric Res 58:273–285

    Article  CAS  Google Scholar 

  • Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3(5):e2118. doi:10.1371/journal.pone.0002118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zalucki MP, Cunningham JP, Downes S, Ward P, Lange C, Meissle M et al (2012) No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton. Bull Entomol Res 102:468–476

  • Zhang JH, Wang CZ, Qin JD, Guo SD (2004) Feeding behavior of Helicoverpa armigera larvae on insect-resistant transgenic cotton and non-transgenic cotton. J Appl Entomol 128:218–225

    Article  Google Scholar 

  • Zhang GF, Wan FH, Lovei GL, Liu WX, Guo JY (2006) Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environ Entomol 35:143–150

    Article  CAS  Google Scholar 

  • Zhang HN, Yin W, Zhao J, Jin L, Yang YH, Wu SW et al (2011) Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS One 6(8):e22874. doi:10.1371/journal.pone.0022874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XC, Wu KM, Liang GM, Guo YY (2008) Altered mating behaviour in a Cry1Ac-resistant strain of Helicoverpa armigera (Lepidoptera: Noctuidae). J Appl Entomol 132:360–365

    Article  Google Scholar 

  • Zhao XC, Wu KM, Liang GM, Guo YY (2009) Modified female calling behavior in Cry1Ac-resistant Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag Sci 65:353–357

    Article  CAS  PubMed  Google Scholar 

  • Zwahlen C, Nentwig W, Bigler F, Hilbeck A (2000) Tritrophic interactions of transgenic Bacillus thuringiensis corn, Anaphothrips obscurus (Thysanoptera: Thripidae), and the predator Orius majusculus (Heteropera: Anthocoridae). Environ Entomol 29:846–850

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their valuable comments on the earlier versions of the manuscript.

Funding

This study partially supported by the FP7-PEOPLE-2012-IRSES fund (project ASCII, grant number: 318246), the FP7-PEOPLE-2013-IRSES fund (project APHIWEB, grant no. 611810) and a ‘becas-mixtas’ scholarship (no. 367437) from the Mexican Council for Science and Technology (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M. Traugott.

Glossary

Associative learning behavior

The behavior involves the establishment, through experience, of an association between two stimuli or between a stimulus and a response.

Sublethal behavioral effects

The behavioral alteration in an arthropod individual that survives an exposure to plant materials containing genetically modified insect-resistant proteins or other toxic compounds.

Calling behavior

Acoustic signals displayed by males for the purpose of attracting mates and repelling rivals.

Dispersal behavior

The capacity of an arthropod in moving/flight and the potential for its spatial distribution.

Foraging behavior

The behavior of an arthropod searching for food, host or prey.

Refuge-in-the-bag

A tactic that planting of mixed Bt and non-Bt crops for preventing or delaying resistance evolution in target arthropod species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Velasco-Hernández, M.C., Ramirez-Romero, R. et al. Behavioral effects of insect-resistant genetically modified crops on phytophagous and beneficial arthropods: a review. J Pest Sci 89, 859–883 (2016). https://doi.org/10.1007/s10340-016-0791-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0791-2

Keywords

Navigation