Skip to main content

Advertisement

Log in

Preferential dolomitization in Mio–Pliocene bioclastic clinoforms, Bonaire Island, South Caribbean: insights from petrographic and geochemical analyses

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Selective dolomitization, where certain carbonate components are preferentially dolomitized over others, can be significant in the overall dynamic context of the global magnesium cycle. Thus, the abundance of these components can modify the Mg balance between the ocean and sediments, thereby disrupting the Mg cycle in certain geological times. Selective dolomitization may be connected to the apparent correlation between global dolomitization events in the Neogene and the synchronous rise in species abundance of coralline red algae (CRA), but the underlying issue remains unclear. In the Caribbean islands, excellent examples of Neogene partially dolomitized carbonates containing coralline red algal facies are described to understand selective dolomitization of different components (grains and matrix) by examining the well-preserved outcrop of partially dolomitized Mio–Pliocene carbonates at the Seru Grandi locality on Bonaire Island, in the Caribbean. The degree and timing of selective dolomitization of various carbonate components are assessed using petrographical and geochemical methods. The micrite matrix is dolomitized first, followed by coralline red algal bioclasts, and subsequently all other grains. Dolomite crystals appear to originate from within and immediately around coralline algal fragments, suggesting that dolomite could have initiated from internally sourced Mg of the CRA’s high-magnesium calcite skeleton. Collectively, these observations suggest that selective dolomitization is controlled primarily by reactive surface area of the carbonate components, but it is less clear as to whether there is a dependency on original mineralogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

Data and material are available upon request.

Code availability

Not applicable.

References

  • Adams JE, Rhodes ML (1960) Dolomitization by seepage refluxion1. AAPG Bull 44(12):1912–1920

    Google Scholar 

  • Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26(4):651–667

    Article  Google Scholar 

  • Alexander CS (1961) The marine terraces of Aruba, Bonaire, and Curaçao, Netherlands Antilles. Ann Assoc Am Geogr 51(1):102–123

    Article  Google Scholar 

  • Al-Helal AB, Whitaker FF, Xiao Y (2012) Reactive transport modeling of brine reflux: dolomitization, anhydrite precipitation, and porosity evolution. J Sediment Res 82(3):196–215

    Article  Google Scholar 

  • Arvidson RS, Mackenzie FT (1999) The dolomite problem; control of precipitation kinetics by temperature and saturation state. Am J Sci 299(4):257–288

    Article  Google Scholar 

  • Auer G, Piller WE (2020) Nanocrystals as phenotypic expression of genotypes—an example in coralline red algae. Sci Adv 6(7):eaay2126

    Article  Google Scholar 

  • Baker P (1986) Pore-water chemistry of carbonate-rich sediments, Lord Howe Rise, Southwest Pacific-Ocean. Initial Rep Deep Sea Drill Project 90:1249–1256

    Google Scholar 

  • Baker PA, Bloomer SH (1988) The origin of celestite in deep-sea carbonate sediments. Geochim Cosmochim Acta 52(2):335–339

    Article  Google Scholar 

  • Bandoian CA, Murray RC (1974) Pliocene-pleistocene carbonate rocks of Bonaire, Netherlands Antilles. Geol Soc Am Bull 85(8):1243–1252

    Article  Google Scholar 

  • Banner JL (1995) Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 42(5):805–824

    Article  Google Scholar 

  • Buchbinder B, Friedman GM (1970) Selective dolomitization of micritic envelopes; a possible clue to original mineralogy. J Sediment Res 40(1):514–517

    Article  Google Scholar 

  • Buchbinder LG (1979) Facies, Environment of Deposition and Correlation of the Zohar (Brur Calcarenite) Karmon, and Shderot Formations in the Ashdod Area, Geological Survey of Israel

  • Budd DA (1997) Cenozoic dolomites of carbonate islands: their attributes and origin. Earth Sci Rev 42(1–2):1–47

    Article  Google Scholar 

  • Budd DA (2019) Bed-scale spatial patterns in dolomite abundance: part II. Effect of varied fluid chemistry, flow rate, precursor mineralogy, temperature, textural heterogeneity, nucleation density and bed geometry. Sedimentology 66(7):2721–2748

    Article  Google Scholar 

  • Budd DA, Mathias WD (2015) Formation of lateral patterns in rock properties by dolomitization: evidence from a miocene reaction front (Bonaire, Netherlands Antilles). J Sediment Res 85(9):1082–1101

    Article  Google Scholar 

  • Budd DA, Park AJ (2018) Formation of bed-scale spatial patterns in dolomite abundance during early dolomitization: part I. Mechanisms and feedbacks revealed by reaction–transport modelling. Sedimentology 65(1):209–234

    Article  Google Scholar 

  • Bullen SB, Sibley DF (1984) Dolomite selectivity and mimic replacement. Geology 12(11):655–658

    Article  Google Scholar 

  • Chave KE (1952) A solid solution between calcite and dolomite. J Geol 60(2):190–192

    Article  Google Scholar 

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium 1. Calcareous Marine Organisms. J Geol 62(3):266–283

    Article  Google Scholar 

  • Chave KE, Schmalz RF (1966) Carbonate–seawater interactions. Geochim Cosmochim Acta 30(10):1037–1048

    Article  Google Scholar 

  • Constantz BR (1986) The primary surface area of corals and variations in their susceptibility to diagenesis, Reef diagenesis. Springer, Berlin, pp 53–76

    Google Scholar 

  • Deffeyes K, Lucia FJ, Weyl P (1965) Dolomitization of recent and plio-pleistocene sediments by marine evaporite waters on Bonaire Netherlands Antilles. SEPM Spec Publ 13:71–88

    Google Scholar 

  • Dickson JAD (1965) A modified staining technique for carbonates in thin section. Nature 205(4971):587–587

    Article  Google Scholar 

  • Dix GR (1997) Stratigraphic patterns of deep-water dolomite, Northeast Australia. J Sediment Res 67(6):1083–1096

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures

  • Embry AF, Klovan JE (1971) A late Devonian reef tract on Northeastern Banks Island, NWT. Bull Can Pet Geol 19(4):730–781. https://doi.org/10.35767/gscpgbull.19.4.730

    Article  Google Scholar 

  • Engel M, Brückner H, Fürstenberg S, Frenzel P, Konopczak AM, Scheffers A, Kelletat D, May SM, Schäbitz F, Daut G (2013) A prehistoric tsunami induced long-lasting ecosystem changes on a semi-arid tropical island—the case of Boka Bartol (Bonaire, Leeward Antilles). Naturwissenschaften 100(1):51–67

    Article  Google Scholar 

  • Felis T, Giry C, Scholz D, Lohmann G, Pfeiffer M, Pätzold J, Kölling M, Scheffers SR (2015) Tropical Atlantic temperature seasonality at the end of the last interglacial. Nat Commun 6:6159

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Goldsmith JR, Graf DL (1958) Structural and compositional variations in some natural dolomites. J Geol 66(6):678–693

    Article  Google Scholar 

  • Grossman E (2012) Chapter 10: oxygen isotope stratigraphy: the geologic time scale. Elsevier, Boston, pp 181–206

    Book  Google Scholar 

  • Halfar J, Mutti M (2005) Global dominance of coralline red-algal facies: a response to Miocene oceanographic events. Geology 33(6):481–484

    Article  Google Scholar 

  • Hippolyte J-C, Mann P (2011) Neogene-Quaternary tectonic evolution of the Leeward Antilles islands (Aruba, Bonaire, Curaçao) from fault kinematic analysis. Mar Pet Geol 28(1):259–277

    Article  Google Scholar 

  • James NP, Jones B (2015) Origin of carbonate sedimentary rocks. Wiley, New York

    Google Scholar 

  • Jones GD, Xiao Y (2005) Dolomitization, anhydrite cementation, and porosity evolution in a reflux system: Insights from reactive transport models. AAPG Bull 89(5):577–601

    Article  Google Scholar 

  • Kaczmarek SE, Sibley DF (2011) On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites. Sediment Geol 240(1–2):30–40

    Article  Google Scholar 

  • Kaczmarek SE, Gregg JM, Bish DL, Machel HG, Fouke BW, MacNeil A, Lonnee J, Wood R (2017) Dolomite, very-high magnesium calcite, and microbes: implications for the microbial model of dolomitization. SEPM Spec Publ 109:1–14

    Google Scholar 

  • Kocurko MJ (1979) Dolomitization by spray-zone brine seepage, San Andres, Colombia. J Sediment Res 49(1):209–213

    Google Scholar 

  • Kramer PA, Swart PK, De Carlo EH, Schovsbo NH (2000) Overview of interstitial fluid and sediment geochemistry, sites 1003–1007 (Bahamas transect). Proc ODP Sci Results 166:179–195

    Google Scholar 

  • Land LS (1967) Diagenesis of skeletal carbonates. J Sediment Res 37(3):914–930

    Google Scholar 

  • Land LS (1985) The origin of massive dolomite. J Geol Educ 33(2):112–125

    Google Scholar 

  • Land LS (1992) The dolomite problem: Stable and radiogenic isotope clues. In: Clauer N, Chaudhuri S (eds) Isotopic signatures and sedimentary records. Lecture notes in Earth sciences, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009861

  • Land LS, Epstein S (1970) Late pleistocene diagenesis and dolomitization, North Jamaica 1. Sedimentology 14(3–4):187–200

    Article  Google Scholar 

  • Laya JC, Sulaica J, Teoh CP, Whitaker F, Gabellone T, Tucker ME, Tesch P, Miller B, Prince K, Izaguirre I (2018a) Controls on Neogene carbonate facies and stratigraphic architecture of an isolated carbonate platform—the Caribbean island of Bonaire. Mar Pet Geol 94:1–18

    Article  Google Scholar 

  • Laya JC, Teoh CP, Prince K, Widodo R (2018b) Dolomitization of neogene carbonate platforms: controversies on synchronous events and bioclast influence. In: Proceedings international sedimentological congress, Montreal, Quebec

  • Laya JC, Teoh CP, Whitaker F, Manche C, Kaczmarek S, Tucker M, Gabellone T, Hasiuk F (2021) Dolomitization of a Miocene–Pliocene progradational carbonate platform by mesohaline brines: re-examination of the reflux model on Bonaire Island. Mar Pet Geol 126:104895

    Article  Google Scholar 

  • Lu FH, Meyers WJ (1998) Massive dolomitization of a late Miocene carbonate platform: a case of mixed evaporative brines with meteoric water, Nijar, Spain. Sedimentology 45(2):263–277

    Article  Google Scholar 

  • Lucia FJ, Major RP (1994) Porosity evolution through hypersaline reflux dolomitization. In Purser B, Tucker M, Zenger D (eds) Dolomites. https://doi.org/10.1002/9781444304077.ch18

  • Machel HG (2004) Concepts and models of dolomitization: a critical reappraisal. Geol Soc Lond Spec Publ 235(1):7–63

    Article  Google Scholar 

  • Machel H-G, Mountjoy EW (1986) Chemistry and environments of dolomitization—a reappraisal. Earth Sci Rev 23(3):175–222

    Article  Google Scholar 

  • Mansour AS, Abd-Ellatif MT (2013) Dolomitization of the Miocene carbonates in Gebel Abu Shaar El Qiblie and Salum area, Egypt: a petrographical and geochemical comparative study. Carbonates Evaporites 28(3):347–363

    Article  Google Scholar 

  • Melim L, Westphal H, Swart P, Eberli G, Munnecke A (2002) Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Mar Geol 185(1–2):27–53

    Article  Google Scholar 

  • Morrow D (1982) Diagenesis 2. Dolomite-Part 2 Dolomitization models and ancient dolostones. Geosci Can 9(2):95–107

    Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, New York

    Google Scholar 

  • Murray R, Lucia F (1967) Cause and control of dolomite distribution by rock selectivity. Geol Soc Am Bull 78(1):21–36

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal at Spectrom 26(12):2508–2518

    Article  Google Scholar 

  • Petrash DA, Bialik OM, Bontognali TR, Vasconcelos C, Roberts JA, McKenzie JA, Konhauser KO (2017) Microbially catalyzed dolomite formation: from near-surface to burial. Earth Sci Rev 171:558–582

    Article  Google Scholar 

  • Rixhon G, May SM, Engel M, Mechernich S, Schroeder-Ritzrau A, Frank N, Fohlmeister J, Boulvain F, Dunai T, Brückner H (2018) Multiple dating approach (14C, 230Th/U and 36Cl) of tsunami-transported reef-top boulders on Bonaire (Leeward Antilles)–Current achievements and challenges. Mar Geol 396(1):100–113

    Article  Google Scholar 

  • Royse C, Wadell J, Petersen L (1971) X-ray determination of calcite-dolomite; an evaluation. J Sediment Res 41(2):483–488

    Google Scholar 

  • Saller AH (1984) Petrologic and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: an example of Dolomitization by Normal Seawater. Geology 12(4):217–220

    Article  Google Scholar 

  • Saller AH (2004) Palaeozoic dolomite reservoirs in the Permian Basin, SW USA: stratigraphic distribution, porosity, permeability and production. Geol Soc Lond Spec Publ 235(1):309–323

    Article  Google Scholar 

  • Saller AH, Henderson N (1998) Distribution of porosity and permeability in platform dolomites: insight from the Permian of West Texas. AAPG Bull 82(8):1528–1550

    Google Scholar 

  • Schlanger SO (1957) Dolomite growth in coralline algae. J Sediment Res 27(2):181–186

    Google Scholar 

  • Sibley DF (1980) Climatic control of dolomitization, Seroe Domi Formation (Pliocene), Bonaire, NA. SEPM Spec Publ 28:247–258

    Google Scholar 

  • Sibley DF (1982) The origin of common dolomite fabrics; clues from the Pliocene. J Sediment Res 52(4):1087–1110

    Google Scholar 

  • Sibley DF, Dedoes RE, Bartlett TR (1987) Kinetics of Dolomitization. Geology 15(12):1112–1114

    Article  Google Scholar 

  • Sibley DF, Gregg JM, Brown RG, Laudon PR (1993) Dolomite crystal size distribution, carbonate microfabrics. Springer, Berlin, pp 195–204

    Book  Google Scholar 

  • Smith AB (1990) Biomineralization in echinoderms. Skelet Biominer Patterns Processes Evol Trends 1:413–442

    Google Scholar 

  • Sulaica JL (2015) Facies distribution and paleogeographic evolution of pleistocene carbonates in Bonaire, Netherlands Antilles

  • Swart PK, Burns S (1990) Pore-water chemistry and carbonate diagenesis in sediments from Leg 115: Indian Ocean. In: Proceedings scientific results, ODP, Leg 115, Mascarene Plateau, ODP, Texas A&M University, College Station; UK distributors, IPOD Committee, pp 629–645

  • Swart PK, Guzikowski M (1988) Interstitial water chemistry and diagenesis of periplatform sediments from the Bahamas, ODP Leg 1011. In: Austin JAJ, Schlager W (eds) Proceedings of the Ocean Drilling Program, Scientific Results, volume 101, pp 363–380

  • Swart PK, Melim LA (2000) The origin of dolomites in tertiary sediments from the margin of Great Bahama Bank. J Sediment Res 70(3):738–748

    Article  Google Scholar 

  • Swart P (1993) The formation of dolomite in sediments from the continental margin of northeastern Queensland. In: McKenzie, JA, Davies PJ, Palmer-Julson AA (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Leg 133. Ocean Drilling Program, College Station, p 513–523

  • Teoh CP, Jacquemyn C, Laya JC (2021) The effects of dolomite geobodies within carbonate clinoforms on fluid flow and connectivity: insights from an outcrop analogue on Bonaire, The Netherlands. Mar Pet Geol 134. https://doi.org/10.1016/j.marpetgeo.2021.105344

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 482

    Book  Google Scholar 

  • Vahrenkamp VC, Swart PK (1990) New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology 18(5):387–391

    Article  Google Scholar 

  • Walter LM (1985) Relative reactivity of skeletal carbonates during dissolution: implications for diagenesis. SEPM Spec Publ 36:3–15

    Google Scholar 

  • Ward W, Halley RB (1985) Dolomitization in a mixing zone of near-seawater composition, late Pleistocene, northeastern Yucatan Peninsula. J Sediment Res 55(3):407–420

    Google Scholar 

  • Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev 52(1):1–81

    Article  Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100(1–4):207–248

    Article  Google Scholar 

  • Whitaker FF, Xiao Y (2010) Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection. AAPG Bull 94(6):889–917

    Article  Google Scholar 

  • Whitaker FF, Smart PL, Jones GD (2004) Dolomitization: from conceptual to numerical models. Geol Soc Lond Spec Publ 235(1):99–139

    Article  Google Scholar 

  • Zapata S, Cardona A, Montes C, Valencia V, Vervoort J, Reiners P (2014) Provenance of the Eocene soebi blanco formation, Bonaire, Leeward Antilles: correlations with post-Eocene tectonic evolution of northern South America. J S Am Earth Sci 52:179–193

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor, Maurice Tucker, and reviewers Philipp Tesch and Jack Stacey for their helpful comments that have greatly improved the quality of this article. We also thank Brent Miller for the LA-ICP-MS measurements used in this article.

Funding

This study was funded by the Berg Hughes Center, Texas A&M University.

Author information

Authors and Affiliations

Authors

Contributions

CPT: writing—original draft preparation, conceptualization, visualization, data collection, investigation, data curation, writing—review and editing; JCL: conceptualization, data collection, investigation, data curation, writing—review and editing, project administration.

Corresponding author

Correspondence to Chia Pei Teoh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teoh, C.P., Laya, J.C. Preferential dolomitization in Mio–Pliocene bioclastic clinoforms, Bonaire Island, South Caribbean: insights from petrographic and geochemical analyses. Facies 67, 30 (2021). https://doi.org/10.1007/s10347-021-00638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-021-00638-9

Keywords

Navigation