Skip to main content
Log in

Timoshenko beam model for chiral materials

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton’s principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

bh :

Width and thickness of beam, respectively

e:

Base of natural logarithm

\(f_i\) :

Body force

k :

Shear coefficient

\(k_{ij} \) :

Curvature tensor

\(m,\,n,\,a,\,l\) :

Coefficients to be determined

\(m_{j}\) :

Body couple

\(m_{ij}\) :

Couple stress tensor

q(xt), a(xt):

Distributed transverse force and distributed longitudinal force, respectively

u(xt), w(xt):

Displacement of midsurface in x and z direction, respectively

\(u_{1}, u_2 , u_3\) :

Three components of displacement vector along x, y, and z direction, respectively

\(w_{(0)} \,, w_{(1)}\) :

Deflection at midpoint of beam central axis of cantilever beam and simply supported beam, respectively

A :

Cross-sectional area of beam

\(C_{\mathrm{h}}\) :

Chiral parameter indicating degree of chirality in material property

I :

Second moment of area of cross-section of beam

L :

Length of beam

\(\overline{M} , \overline{N} ,\overline{V} \) :

Axial force, lateral force, and moment applied at the two ends of the beam, respectively

U :

Stored strain energy

\(\alpha , \beta , \gamma , \eta \) :

Elastic constants introduced in micropolar theory

\(\chi ,\kappa ,\nu \) :

Elastic constants representing material chirality

\(\delta _{kl}\) :

Kronecker delta

\(\varepsilon _{ij}\) :

Strain tensor

\(\phi _i\) :

Microrotation vector

\(\mu ,\lambda \) :

Classical Lame’ constants

\(\theta (x,t)\) :

Angle of rotation of normal to midsurface of beam

\(\rho \) :

Mass density of chiral material

\(\sigma _{ij} \) :

Stress tensor

\(\omega \) :

Circular frequency of vibration

References

  1. Wang, J.S., Wang, G., Feng, X.Q., et al.: Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci. Rep. 3, 3102 (2013)

    Article  Google Scholar 

  2. Wang, J.S., Cui, Y.H., Shimada, T., et al.: Unusual winding of helices under tension. Appl. Phys. Lett. 105, 043702 (2014)

    Article  Google Scholar 

  3. Chen, Z., Majidi, C., Srolovitz, D., et al.: Tunable helical ribbons. Appl. Phys. Lett. 98, 011906 (2011)

    Article  Google Scholar 

  4. Yu, X.J., Zhang, L.N., Hu, N., et al.: Shape formation of helical ribbons induced by material anisotropy. Appl. Phys. Lett. 110, 091901 (2017)

    Article  Google Scholar 

  5. Ji, X.Y., Zhao, M.Q., Wei, F., et al.: Spontaneous formation of double helical structure due to interfacial adhesion. Appl. Phys. Lett. 100, 263104 (2012)

    Article  Google Scholar 

  6. Zhao, Z.L., Li, B., Feng, X.Q.: Handedness-dependent hyperelasticity of biological soft fibers with multilayered helical structures. Int. J. Nonlinear Mech. 81, 19–29 (2016)

    Article  Google Scholar 

  7. Okushima, T., Kuratsuji, H.: DNA as a one-dimensional chiral material: application to the structural transition between B form and Z form. Phys. Rev. E 84, 021926 (2011)

    Article  Google Scholar 

  8. Coombs, D., Huber, G., Kessler, J.O., et al.: Periodic chirality transformations propagating on bacterial flagella. Phys. Rev. Lett. 89, 118102 (2002)

    Article  Google Scholar 

  9. Wang, X.L., Sun, Q.P.: Mechanical model of the bistable bacterial flagellar filament. Acta Mech. Solida Sin. 24, 1–16 (2011)

    Article  Google Scholar 

  10. Chandraseker, K., Mukherjee, S., Paci, J.T., et al.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2015)

    Article  Google Scholar 

  11. Robbie, K., Breet, M.J., Lakhtakia, A.: Chiral sculpted thin films. Nature 384, 616–616 (1996)

    Article  Google Scholar 

  12. Rong, Q.Q., Cui, Y.H., Shimada, T., et al.: Self-shaping of bioinspired chiral composites. Acta Mech. Sin. 30, 533–539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lakes, R.S., Benedict, R.L.: Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20, 1161–1167 (1982)

    Article  MATH  Google Scholar 

  14. Sharma, P.: Size-dependent elastic fields of embedded inclusions in isotropic chiral solids. Int. J. Solids Struct. 41, 6317–6333 (2004)

    Article  MATH  Google Scholar 

  15. Lakes, R.: Elastic and viscoelastic behavior of chiral materials. Int. J. Mech. Sci. 43, 1579–1589 (2001)

    Article  MATH  Google Scholar 

  16. Upmanyu, M., Wang, H.L., Liang, H.Y., et al.: Strain-dependent twist-stretch elasticity in chiral filaments. J. R. Soc. Interface 5, 303–310 (2008)

    Article  Google Scholar 

  17. Tallarico, D., Movchan, N.V., Movchan, A.B., et al.: Tilted resonators in a triangular elastic lattice: chirality, bloch waves and negative refraction. J. Mech. Phys. Solids 103, 236–256 (2017)

    Article  MathSciNet  Google Scholar 

  18. Liu, X.N., Huang, G.L., Ku, G.K.: Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60, 1907–1921 (2012)

    Article  MathSciNet  Google Scholar 

  19. Spadoni, A., Ruzzene, M.: Elasto-satic micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012)

    Article  Google Scholar 

  20. Papanicolopulos, S.A.: Chirality in isotropic linear gradient elasticity. Int. J. Solids Struct. 48, 745–752 (2011)

    Article  MATH  Google Scholar 

  21. Wang, J.S., Shimada, T., Wang, G.F., et al.: Effects of chirality and surface stresses on the bending and buckling of chiral nanowires. J. Phys. D: Appl. Phys. 47, 015302 (2014)

    Article  Google Scholar 

  22. Leşan, D.: Chiral effects in uniformly loaded rods. J. Mech. Phys. Solids 58, 1272–1285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leşan, D.: Fundamental solutions for chiral solids in gradient elasticity. Mech. Res. Commun. 61, 47–52 (2014)

    Article  Google Scholar 

  24. Healey, T.J.: Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 7, 405–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smith, M.L., Healey, T.J.: Predicting the onset of DNA supercoiling using a non-linear hemitropic elastic rod. Int. J. Nonlinear Mech. 43, 1020–1028 (2008)

    Article  Google Scholar 

  26. Zhao, Z.L., Zhao, H.P., Chang, Z., et al.: Analysis of bending and buckling of pre-twisted beams: a bioinspired study. Acta Mech. Sin. 30, 507–515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ye, H.M., Wang, J.S., Tang, S., et al.: Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules 43, 5762–5770 (2010)

    Article  Google Scholar 

  28. Zhao, Y.P.: Modern Continuum Mechanics. Science Press, Beijing (2016). (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants 11472191, 11272230, and 11372100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Wang.

Appendix

Appendix

Substituting Eqs. (40)–(42) into Eqs. (31), (32), (36), and (39) leads to the following four linear algebraic equations

$$\begin{aligned}&k(\mu +\alpha )\left( \frac{2}{3}mL^{3}-\frac{1}{2}mL^{4}-\frac{3}{2}aL^{4}\right. \nonumber \\&\left. \qquad +\frac{6}{5}aL^{5}\right) A-k(\mu -\alpha )n\left( \frac{1}{6}L^{4}-\frac{1}{10}L^{5}\right) A \nonumber \\&\qquad +b(k+1)(\chi +\nu )\left[ {n\left( \frac{1}{12}L^{4}-\frac{1}{20}L^{5}\right) } \right. \frac{2\chi +\kappa }{2\gamma +\beta }h \nonumber \\&\qquad +l(L^{2}-L^{3}-\frac{8L^{2}}{{\uppi }^{2}}+\frac{24L^{3}}{{\uppi }^{2}}+\frac{48L^{3}}{{\uppi }^{3}})\nonumber \\&\qquad \left. \hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] +F(L^{2}-L^{3})=0, \end{aligned}$$
(A1)
$$\begin{aligned}&-\frac{4}{3}L^{3}(2\mu +\lambda )In+(2\chi +\kappa )b\left\{ {\frac{h^{3}L^{3}}{9}n} \frac{2\chi +\kappa }{2\gamma +\beta } \right. \nonumber \\&\left. \qquad +l\frac{8L^{2}}{{\uppi }^{2}}\sqrt{\frac{\gamma +\eta }{2\gamma +\beta }}\left[ h\cosh \left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right. \right. \nonumber \\&\left. \left. \qquad -\sqrt{\frac{\gamma +\eta }{2\gamma +\beta }}\frac{4L}{{\uppi }}\sinh \left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] \right\} \nonumber \\&\qquad -k(\mu +\alpha )n\frac{8}{15}L^{5}A+k(\mu -\alpha )n\left( \frac{5}{6}mL^{4}-\frac{9}{10}aL^{5}\right) A \nonumber \\&\left. \qquad +b(k+1)(\chi -\nu )\left[ {n\frac{4}{15}L^{5}} \right. \frac{2\chi +\kappa }{2\gamma +\beta }h\right. \nonumber \\&\left. \qquad +l\frac{16L^{3}}{{\uppi }^{3}}\hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] =0, \end{aligned}$$
(A2)
$$\begin{aligned}&k(\mu +\alpha )(2mL-3aL^{2})A-k(\mu -\alpha )L^{2}nA \nonumber \\&\qquad +\frac{1}{2}b(k+1)(\chi +\nu ) \left[ nL^{2}\frac{2\chi +\kappa }{2\gamma +\beta }h\right. \nonumber \\&\qquad \left. +2l\hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] =-F, \end{aligned}$$
(A3)
$$\begin{aligned}&\frac{1}{2}(k+1)(\chi +\nu )\left[ \left( \frac{5}{6}mL^{4}-\frac{9}{10}aL^{5}\right) \frac{2\chi +\kappa }{2\gamma +\beta }\frac{h}{2}\right. \nonumber \\&\qquad \left. +\left( \frac{8mL^{2}}{{\uppi }^{2}}-\frac{24aL^{3}}{{\uppi }^{2}}\right. \right. \nonumber \\&\qquad \left. \left. +\frac{48aL^{3}}{{\uppi }^{3}}\right) \hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] \nonumber \\&\qquad -(k+1)(\chi -\nu )n\left[ \frac{4}{15}L^{5}\frac{2\chi +\kappa }{2\gamma +\beta }\frac{h}{2}\right. \nonumber \\&\qquad \left. +\frac{8L^{3}}{{\uppi }^{3}}\hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] \nonumber \\&\qquad +(\gamma +\eta )\left\{ n\left[ \frac{4}{15}L^{5}\frac{2\chi +\kappa }{2\gamma +\beta }\frac{h}{2}\right. \right. \nonumber \\&\qquad \left. \left. +\frac{16L^{3}}{{\uppi }^{3}}\hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] \frac{2\chi +\kappa }{2\gamma +\beta }\right. \nonumber \\&\qquad \left. +l\sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\left[ \frac{8L^{2}}{{\uppi }^{2}}\frac{2\chi +\kappa }{2\gamma +\beta }\frac{h}{2}\right. \right. \nonumber \\&\qquad \left. \left. +\frac{\pi }{4}\hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right] \cosh \left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{4L}\right) \right\} =0.\nonumber \\ \end{aligned}$$
(A4)

In the case of the simply supported beam, following a procedure similar to that in Eqs. (A1)–(A4) results in the following equations

$$\begin{aligned}&-\frac{1}{2}k(\mu +\alpha )m\frac{{\uppi }^{2}}{L}A+\frac{1}{2}k(\mu -\alpha )n{\uppi }A \nonumber \\&\quad -\frac{1}{4}b(k+1)(\chi +\nu ){\uppi }\nonumber \\&\quad \times \left[ {n\frac{2\chi +\kappa }{2\gamma +\beta }h+2l\hbox {sinh}\left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{2L}\right) } \right] \nonumber \\&\quad +\frac{2ql}{{\uppi }}=0,\end{aligned}$$
(A5)
$$\begin{aligned}&b(2\chi +\kappa )\frac{{\uppi }^{2}}{L^{2}}\left\{ \frac{h^{3}}{12} \frac{2\chi +\kappa }{2\gamma +\beta }n\right. \nonumber \\&\left. \quad +\sqrt{\frac{\gamma +\eta }{2\gamma +\beta }}\frac{L}{{\uppi }}\left[ h \cosh \left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{2L}\right) \right. \right. \nonumber \\&\left. \left. \quad -2\sqrt{\frac{\gamma +\eta }{2\gamma +\beta }}\frac{L}{{\uppi }}\sinh \left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{2L}\right) \right] l \right\} \nonumber \\&\quad +k(\mu -\alpha )m\frac{\uppi }{{L }}A-k(\mu +\alpha )nA \nonumber \\&\quad -(2\mu +\lambda )In\frac{{\uppi }^{2}}{L^{2}}+\frac{1}{2}b(k+1)(\chi -\nu )\left[ n\frac{2\chi +\kappa }{2\gamma +\beta }h\right. \nonumber \\&\left. \quad +2l\sinh \left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{2L}\right) \right] =0, \end{aligned}$$
(A6)
$$\begin{aligned}&\frac{1}{2}(k+1)(\chi +\nu )m\frac{{\uppi }}{L}-\frac{1}{2}(k+1)(\chi -\nu )n\nonumber \\&\quad +(\gamma +\eta )\left[ n\frac{2\chi +\kappa }{2\gamma +\beta }\right. \nonumber \\&\left. \quad +l\sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }}{L}\cosh \left( \sqrt{\frac{2\gamma +\beta }{\gamma +\eta }}\frac{{\uppi }h}{2L}\right) \right] =0. \end{aligned}$$
(A7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T.Y., Wang, Y.N., Yuan, L. et al. Timoshenko beam model for chiral materials. Acta Mech. Sin. 34, 549–560 (2018). https://doi.org/10.1007/s10409-017-0735-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0735-y

Keywords

Navigation