Skip to main content
Log in

Revisiting the peridynamic motion equation due to characterization of boundary conditions

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The peridynamic motion equation was investigated once again. The origin of incompatibility between boundary conditions and peridynamics was analyzed. In order to eliminate this incompatibility, we proposed a new peridynamic motion equation in which the effects of boundary traction and boundary displacement constraint were introduced. The new peridynamic motion equation is invariant under the transformations of rigid translation and rotation. Meanwhile, it also satisfies the requirements of total linear and angular momentum equilibrium. By this motion equation, three kinds of boundary value problems containing the displacement boundary condition, the traction boundary condition and mixed boundary condition are characterized in peridynamics. As examples, we calculated static tension and longitudinal vibration of a finite rod. The acquired solutions exhibit obvious nonlocal features, and the vibration has the dispersion similar to one dimensional atom chain vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  2. Silling, S.A., Epton, M., Weckner, O., et al.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  3. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  4. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2014)

    Book  Google Scholar 

  5. Bobaru, F., Foster, J.T., Geubelle, P.H., et al.: Handbook of Peridynamic Modeling. CRC Press, New York (2017)

    Book  Google Scholar 

  6. Javili, A., Morasata, R., Oterkus, E., et al.: Peridynamics review. Mech. Math. Solids. https://doi.org/10.1177/1081286518803411 (2018)

    Article  MathSciNet  Google Scholar 

  7. Emmrich, E., Weckner, O.: On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)

    Article  MathSciNet  Google Scholar 

  8. Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13C–37 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176, 215–222 (2012)

    Article  Google Scholar 

  10. Bazant, Z.P., Luo, W., Chau, V.T., et al.: Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. J. Appl. Mech. 83, 111004 (2016)

    Article  Google Scholar 

  11. Butt, S.N., Timothy, J.J., Meschke, G.: Wave dispersion and propagation in state-based peridynamics. Comput. Mech. 60, 725–738 (2017). https://doi.org/10.1007/s00466-017-1439-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)

    Article  MathSciNet  Google Scholar 

  13. Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)

    Article  MathSciNet  Google Scholar 

  14. Weckner, O., Brunk, G., Epton, M.A., et al.: Green’s functions in non-local three-dimensional linear elasticity. Proc. R. Soc. A 465, 3463–3487 (2009)

    Article  MathSciNet  Google Scholar 

  15. Mikata, Y.: Analytical solutions of peristatic and peridynamic problems for a 1d infinite rod. Int. J. Solids Struct. 49, 2887–2897 (2012)

    Article  Google Scholar 

  16. Wang, L.J., Xu, J.F., Wang, J.X.: Static and dynamic greens functions in peridynamics. J. Elast. 126, 95–125 (2017)

    Article  MathSciNet  Google Scholar 

  17. Di Paola, M., Failla, G., Zingales, M.: Physically-based approach to the mechanics of strong nonlocal elasticity theory. J. Elast. 97, 103–130 (2009)

    Article  Google Scholar 

  18. Di Paola, M., Pirrotta, A., Zingales, M.: Mechanically-based approach to nonlocal elasticity theory: variational principles. Int. J. Solids Struct. 49, 539–548 (2010)

    Article  Google Scholar 

  19. Huang, Z.: Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions. Int. J. Solids Struct. 49, 2150–2154 (2012)

    Article  Google Scholar 

  20. Huang, Z.: The damage models based on the representation of nonlocal residual. Math. Mech. Solids 17, 317–326 (2012)

    Article  MathSciNet  Google Scholar 

  21. Seleson, P., Parks, M.L.: On the role of the influence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11672129) and the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics, MCMS-I-0218G01). The author thanks Professor Dan Huang and Dr. Fei Han for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaixing Huang.

Appendices

Appendix A

With Eq. (11), we have

$$\begin{aligned}&{} \mathbf y (\mathbf x ,t)\times \left\{ \int _{\partial \Omega }[K(\mathbf x ,\mathbf x ')\mathbf p (\mathbf x ',t)+ L(\mathbf x ,\mathbf x ')\mathbf y (\mathbf x ',t)]\mathrm {d}a(\mathbf x ')\right. \nonumber \\&\qquad \left. +\,\int _{\Omega }{} \mathbf f (\mathbf x ,\mathbf x ',t)\mathrm {d}v(\mathbf x ')+\mathbf b (\mathbf x ,t)\right\} \nonumber \\&\quad = \mathbf y (\mathbf x ,t)\times \rho (\mathbf x )\ddot{\mathbf{u }}(\mathbf x ,t), \end{aligned}$$
(A1)

where \(\mathbf y (\mathbf x ,t)=\mathbf x +\mathbf u (\mathbf x ,t)\). Integrating Eq. (A1) over \(\Omega \) leads to

$$\begin{aligned}&\int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \int _{\partial \Omega }[K(\mathbf x ,\mathbf x ')\mathbf p (\mathbf x ',t)\nonumber \\&\qquad +\, L(\mathbf x ,\mathbf x ')\mathbf y (\mathbf x ',t)]\mathrm {d}a(\mathbf x ')\mathrm {d}v(\mathbf x )\nonumber \\&\qquad +\,\int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \int _{\Omega }{} \mathbf f (\mathbf x ,\mathbf x ',t)\mathrm {d}v(\mathbf x ') \mathrm {d}v(\mathbf x )\nonumber \\&\qquad +\,\int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \mathbf b (\mathbf x ,t)\mathrm {d}v(\mathbf x )\nonumber \\&\quad = \int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \rho (\mathbf x )\ddot{\mathbf{u }}(\mathbf x ,t)\mathrm {d}v(\mathbf x ). \end{aligned}$$
(A2)

In Eq. (A2), the first term can be rewritten as

$$\begin{aligned}&\int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \int _{\partial \Omega } [K(\mathbf x ,\mathbf x ')\mathbf p (\mathbf x ',t)\nonumber \\&\qquad +\, L(\mathbf x ,\mathbf x ')\mathbf y (\mathbf x ',t)]\mathrm {d}a(\mathbf x ')\mathrm {d}v(\mathbf x )\nonumber \\&\quad = \int _{\partial \Omega }\int _{\Omega }[\mathbf y (\mathbf x ,t)-\mathbf y (\mathbf x ',t)]\times [K(\mathbf x ,\mathbf x ')\mathbf p (\mathbf x ',t)\nonumber \\&\qquad +\,L(\mathbf x ,\mathbf x ')\mathbf y (\mathbf x ',t)] \mathrm {d}v(\mathbf x )\mathrm {d}a(\mathbf x ')\nonumber \\&\qquad +\,\int _{\partial \Omega }{} \mathbf y (\mathbf x ,t)\times \mathbf p (\mathbf x ,t)\mathrm {d}a(\mathbf x ). \end{aligned}$$
(A3)

Owing to Eq. (14) or (16), Eq. (A3) reduces to

$$\begin{aligned}&\int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \int _{\partial \Omega } [K(\mathbf x ,\mathbf x ')\mathbf p (\mathbf x ',t)\nonumber \\&\qquad +\, L(\mathbf x ,\mathbf x ')\mathbf u (\mathbf x ',t)]\mathrm {d}a(\mathbf x ')\mathrm {d}v(\mathbf x )\nonumber \\&\quad = \int _{\partial \Omega }{} \mathbf y (\mathbf x ,t)\times \mathbf p (\mathbf x ,t)\mathrm {d}a(\mathbf x ). \end{aligned}$$
(A4)

With Eq. (2), it is easy to give that [2]

$$\begin{aligned}&\int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \int _{\Omega }{} \mathbf f (\mathbf x ,\mathbf x ',t)\mathrm {d}v(\mathbf x ') \mathrm {d}v(\mathbf x )\nonumber \\&\quad =\frac{1}{2}\int _{\Omega }\int _{H_x}[\mathbf y (\mathbf x ,t)-\mathbf y (\mathbf x ',t)]\nonumber \\&\qquad \times \, \mathbf f (\mathbf x ,\mathbf x ',t)\mathrm {d}v(\mathbf x ')\mathrm {d}v(\mathbf x ). \end{aligned}$$
(A5)

In terms of Eq. (15) or (17), Eq. (A5) reduces to

$$\begin{aligned} \int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \int _{\Omega }{} \mathbf f (\mathbf x ,\mathbf x ',t)\mathrm {d}v(\mathbf x ') \mathrm {d}v(\mathbf x )=0. \end{aligned}$$
(A6)

Substituting Eqs. (A4) and (A6) into Eq. (A2) yields

$$\begin{aligned}&\int _{\partial \Omega }{} \mathbf y (\mathbf x ,t)\times \mathbf p (\mathbf x ,t)\mathrm {d}a(\mathbf x )+ \int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \mathbf b (\mathbf x ,t)\mathrm {d}v(\mathbf x )\nonumber \\&\quad = \int _{\Omega }{} \mathbf y (\mathbf x ,t)\times \rho (\mathbf x )\ddot{\mathbf{u }}(\mathbf x ,t)\mathrm {d}v(\mathbf x ), \end{aligned}$$
(A7)

which shows that the equilibrium of angular momentum is satisfied for a bounded body subjected to boundary traction, boundary displacement constraint and body force.

Appendix B

With Eq. (36), Eq. (33) is written as

$$\begin{aligned} \alpha (x)p+\beta (x)y(x)+\gamma \int _{-l/2}^{l/2}y(x)\mathrm {d}x-l\gamma y(x)=0. \end{aligned}$$
(B1)

Let

$$\begin{aligned} c=\int _{-l/2}^{l/2}y(x)\mathrm {d}x{,} \end{aligned}$$
(B2)

so we have

$$\begin{aligned} \alpha (x)p+\beta (x)y(x)+\gamma c-l\gamma y(x)=0. \end{aligned}$$
(B3)

That is

$$\begin{aligned} y(x)=\frac{\gamma c+p\alpha (x)}{l\gamma -\beta (x)}. \end{aligned}$$
(B4)

Inserting Eq. (B4) in Eq. (B2) leads to Eq. (39).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Revisiting the peridynamic motion equation due to characterization of boundary conditions. Acta Mech. Sin. 35, 972–980 (2019). https://doi.org/10.1007/s10409-019-00860-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00860-3

Keywords

Navigation