Skip to main content
Log in

Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) methods based on three-dimensional (3D) vessel reconstructions have recently been shown to provide prognostically relevant hemodynamic data. However, the geometry reconstruction and the assessment of clinically relevant hemodynamic parameters may depend on the used imaging modality. In this study, the silicon model of the left coronary artery (LCA) was acquired with a biplane angiography. The geometry reconstruction was done using commercial CAAS 5.2 QCA 3D software and compared with an original geometry. The original model is an optically digitized post-mortem vessel cast. The biplane angiography reconstruction achieved a Hausdorff surface distance of 0.236 mm to the original geometry that is comparable with results obtained in our earlier study for computed tomography (CT) and magnetic resonance imaging (MRI) reconstructions. Steady flow simulations were performed with a commercial CFD program FLUENT. A comparison of the calculated wall shear stress (WSS) shows good correlation for histograms (r = 0.97) and good agreement among the four modalities with a mean WSS of 0.65 Pa in the original model, of 0.68 Pa in the CT-based model, of 0.67 Pa in the MRI based model, and of 0.69 Pa in the biplane angiography-based model. We can conclude that the biplane angiography-based reconstructions can be used for the WSS profiling of the coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

References

  1. Affeld K., L. Goubergrits, J. Fernandez-Britto, and L. Falkon. Variability of the Geometry of the Human Common Carotid Artery, a Vessel Cast Study of 31 Specimens, Path. Res. Pr. 194:597-602, 1998.

    CAS  Google Scholar 

  2. Ali, M. H. and P. T. Schumacker. Endothelial responses to mechanical stress: Where is the mechanosensor? Crit Care Med 30:S198 –S206, 2002. doi:10.1097/00003246-200205001-00005

    Article  PubMed  CAS  Google Scholar 

  3. Aquaro G. D., G. Di Bella, E. Strata, M. Deiana, D. De Marchi, A. Pingitore, and M. Lombardi. Cardiac magnetic resonance findings in isolated congenital left ventricular diverticuli. Int J Cardiovasc Imaging 23:43–47, 2007. doi:10.1007/s10554-006-9120-9

    Article  Google Scholar 

  4. Berthier B., R. Bouzerar, and C. Legallais. Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. Journal of Biomechanics 35:1347–1356, 2002. doi:10.1016/S0021-9290(02)00179-3

    Article  PubMed  CAS  Google Scholar 

  5. Birchall D., A. Zaman, J. Hacker, G. Davies, and D. Mendelow. Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics. Europ. Radiology 16:1074–1083, 2006. doi:10.1007/s00330-005-0048-6

    Article  PubMed  Google Scholar 

  6. Bom, N., C. L. de Korte, J. J. Wentzel, R. Krams, S. G. Carlier, A. W. van der Steen, C. J. Slager, and J. R. Roelandt. Quantification of plaque volume, shear stress on the endothelium, and mechanical properties of the arterial wall with intravascular ultrasound imaging. Z. Kardiol. 89(Suppl 2):105-111, 2000. doi:10.1007/s003920070108

    Article  PubMed  Google Scholar 

  7. Buchanan J. R., C. Kleinstreuer, G. A. Truskey, and M. Lei. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis 143:27–40, 1999. doi:10.1016/S0021-9150(98)00264-0

    Article  PubMed  CAS  Google Scholar 

  8. Cademartiri F., A. A. Palumbo, E. Maffei. Non invasive imaging of coronary arteries with 64-slice CT and 1.5T MRI: challenging invasive techniques. Acta Biomed 78:6–15, 2007.

    PubMed  Google Scholar 

  9. Cirino, G., S. Fiorucci, and W.C. Sessa. Endothelial nitric oxide synthase: the Cinderella of inflammation? Trends in Pharmacological Sciences 24(2):91–95, 2003. doi:10.1016/S0165-6147(02)00049-4

    Article  CAS  Google Scholar 

  10. Coles D. R., P. Wilde, M. Oberhoff, Ch. A. Rogers, K. R. Karsch, and A. Baumbach. Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging 23:603–614, 2007. doi:10.1007/s10554-006-9193-5

    Article  Google Scholar 

  11. De Feyter P. J., W. B. Meijboom, and A. Weustink. Spiral multislice computed tomography coronary angiography: a current status report. Clin. Cardiol. 30:437–42, 2007. doi:10.1002/clc.16

    Article  PubMed  Google Scholar 

  12. Frangos, S. G. Localization of atherosclerosis: role of hemodynamics. Arch. Surg. 134:1142-1149, 1999. doi:10.1001/archsurg.134.10.1142

    Article  PubMed  CAS  Google Scholar 

  13. Glor F. P., B. Ariff, A. D. Hughes, L. A. Crowe, P. R. Verdonck, D. C. Barratt, S. A. McG Thom, D. N. Firmin, and X. Y. Xu. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol. Meas. 25:1495–1509, 2004. doi:10.1088/0967-3334/25/6/014

    Article  PubMed  CAS  Google Scholar 

  14. Glor F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. McG Thom, P. R. Verdonck, and X. Y. Xu. Reproducibility Study of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Carotid Bifurcation Flow. Annals of Biomedical Engineering 31:142–151, 2003. doi:10.1114/1.1537694

    Article  PubMed  CAS  Google Scholar 

  15. Goubergrits, L., K. Affeld, E. Wellnhofer, R. Zurbrugg, and T. Holmer. Estimation of wall shear stress in bypass grafts with computational fluid dynamics method. Int. J. Artif. Organs 24:145-151, 2001.

    PubMed  CAS  Google Scholar 

  16. Goubergrits L., U. Kertzscher, B. Schöneberg, E. Wellnhofer, Ch. Petz, and H.-Ch. Hege. CFD Analysis in an Anatomically Realistic Coronary Artery Model Based on Non-invasive 3D Imaging: Comparison of Magnetic Resonance Imaging with Computed Tomography. International Journal of Cardiovascular Imaging 24(4):411-421, 2008. doi:10.1007/s10554-007-9275-z

    Article  Google Scholar 

  17. He X. J., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J. Biomech. Eng. - Trans. ASME 118:74–82, 1996. doi:10.1115/1.2837095

    Article  CAS  Google Scholar 

  18. Kleinstreuer C., S. Hyun, J. R. Buchanan, P. W. Longest, J. P. Archie, and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.

    PubMed  CAS  Google Scholar 

  19. Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17:2061-2065, 1997.

    PubMed  CAS  Google Scholar 

  20. LaDisa J. F., L. E. Olsona, I. Gulere, D. A. Hettricka, J. R. Kerstenb, D. C. Warltiera, and P. S. Pagela. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J Appl Physiol 98(3):947–957, 2005. doi:10.1152/japplphysiol.00872.2004

    Article  PubMed  Google Scholar 

  21. Lei M., C. Kleinstreuer, and G. A. Truskex. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med. Eng. Phys. 18 (4):326-332, 1996. doi:10.1016/1350-4533(95)00045-3

    Article  PubMed  CAS  Google Scholar 

  22. Longest, P. W. Computational Analyses of Transient Particle Hemodynamics with Applications to Femoral Bypass Graft Designs. PhD thesis, North Carolina State University, Raleigh, 2002.

  23. Lorensen, W. E., and H. E. Cline: Marching Cubes: A high resolution 3D surface construction algorithm. In: Computer Graphics 21(4):163-169, 1987. doi:10.1145/37402.37422

    Article  Google Scholar 

  24. Malek A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis J. Am.Med. Assoc. 282:2035–42, 1999. doi:10.1001/jama.282.21.2035

    Article  CAS  Google Scholar 

  25. Myers J. G., J. A. Moore, M. Ojha, K.W. Johnston, and C.R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Annals of Biomedical Engineering 29:109–120, 2001. doi:10.1114/1.1349703

    Article  PubMed  CAS  Google Scholar 

  26. Nijenhuis R. J., M. J. Jacobs, K. Jaspers, M. Reijnders, J. M. A. van Engelshoven, T. Leiner, and W. H. Backes. Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients. Journal of Vascular Surgery 45:677–85, 2007. doi:10.1016/j.jvs.2006.11.046

    Article  PubMed  Google Scholar 

  27. Perktold K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M.H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998. doi:10.1016/S0021-9290(97)00118-8

    Article  PubMed  CAS  Google Scholar 

  28. Prakash S., and C. R. Ethier. Requirements for mesh resolution in 3-D computational hemodynamics. Journal of Biomedical Engineering 123:26–38, 2001.

    Google Scholar 

  29. Ramcharitar S., J. Daeman, M. Patterson, R. J. van Guens, E. Boersma, P. W. Serruys, W. J. van der Giessen. First direct in vivo comparison of two commercially available three-dimensional quantitative coronary angiography systems. Catheterization and Cardiovascular Interventions 71:44–50, 2008. doi:10.1002/ccd.21418

    Article  Google Scholar 

  30. Resnick, N., S. Einav, L. Chen-Konak, M. Zilberman, H. Yahav, and A. Shay-Salit. Hemodynamic forces as stimulus for arteriogenesis. Endothelium 10(4-5):197-206, 2003. doi:10.1080/713715231

    Article  PubMed  Google Scholar 

  31. Stone P. H., A. U. Coskun, Y. Yeghiazarians, S. Kinlay, J. J. Popma, R. E. Kuntz, and C. L. Feldman. Prediction of sites of coronary atherosclerosis progression: In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr. Opin. Cardiol. 18:458-470, 2003. doi:10.1097/00001573-200311000-00007

    Article  PubMed  Google Scholar 

  32. Munkres, J. Topology, 2nd ed. NJ: Prentice Hall, 1999.

  33. Wellnhofer E., W. Bocksch, N. Hiemann, M. Dandel, W. Klimek, R. Hetzer, and E. Fleck. Shear stress and vascular remodeling: study of cardiac allograft coronary artery disease as a model of diffuse atherosclerosis. J Heart Lung Transplant. 21(4):405–416, 2002. doi:10.1016/S1053-2498(01)00374-6

    Article  PubMed  Google Scholar 

  34. Wellnhofer E., L. Goubergrits, U. Kertzscher, and K. Affeld. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. Biomed Eng Online 5(1):39, 2006. doi:10.1186/1475-925X-5-39

    Google Scholar 

  35. Wellnhofer, E., L. Goubergrits, U. Kertzscher, K. Affeld, and E. Fleck. Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients. Atherosclerosis 202(2):483–490, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by German Research Foundation (DFG). We thank Dr. Jose Fernandez-Britto, Pathology Department of the Dr. Finlay Hospital, Havana, Cuba, who fabricated the cast of the left coronary artery. We also thank Mr. Lothar Paul, 3D Data Processing Department of the GFaI, Berlin, Germany, who performed surface reconstructions and optical digitalization of the vessel cast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Goubergrits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goubergrits, L., Wellnhofer, E., Kertzscher, U. et al. Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography. Ann Biomed Eng 37, 682–691 (2009). https://doi.org/10.1007/s10439-009-9656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9656-7

Keywords

Navigation