Skip to main content
Log in

A Novel Approach to Propagation Pattern Analysis in Intracardiac Atrial Fibrillation Signals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate propagation patterns in intracardiac signals recorded during atrial fibrillation (AF) using an approach based on partial directed coherence (PDC), which evaluates directional coupling between multiple signals in the frequency domain. The PDC is evaluated at the dominant frequency of AF signals and tested for significance using a surrogate data procedure specifically designed to assess causality. For significantly coupled sites, the approach allows also to estimate the delay in propagation. The methods potential is illustrated with two simulation scenarios based on a detailed ionic model of the human atrial myocyte as well as with real data recordings, selected to present typical propagation mechanisms and recording situations in atrial tachyarrhythmias. In both simulation scenarios the significant PDCs correctly reflect the direction of coupling and thus the propagation between all recording sites. In the real data recordings, clear propagation patterns are identified which agree with previous clinical observations. Thus, the results illustrate the ability of the novel approach to identify propagation patterns from intracardiac signals during AF, which can provide important information about the underlying AF mechanisms, potentially improving the planning and outcome of arrhythmia ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Arentz, T., L. Haegeli, P. Sanders, R. Weber, F. J. Neumann, D. Kalusche, and M. Haïssaguerre. High-density mapping of spontaneous pulmonary vein activity initiating atrial fibrillation in humans. J. Cardiovasc. Electrophysiol. 18:31–38, 2007.

    Article  PubMed  Google Scholar 

  2. Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114:2434–2442, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Baccalá, L. A., and K. Sameshima. Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84:463–474, 2001.

    Article  PubMed  Google Scholar 

  4. Baccalá, L. A., K. Sameshima, G. Ballester, A. C. D. Valle, and C. Timo-Iaria. Studying the interaction between brain structures via directed coherence and granger causality. Appl. Signal Process. 5:40–48, 1998.

    Article  Google Scholar 

  5. Baccalá, L. A., K. Sameshima, and D. Y. Takahashi. Generalized partial directed coherence. In: Proc. 15th IEEE Int. Conf. Dig. Sig. Proc., 2007, pp. 162–166.

  6. Barbaro, V., P. Bartolini, G. Calcagnini, F. Censi, and A. Michelucci. Measure of synchronisation of right atrial depolarisation wavefronts during atrial fibrillation. Med. Biol. Eng. Comput. 40:56–62, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Berenfeld, O., and J. Jalife. Letter by Berenfeld and Jalife regarding article “Dominant frequency of atrial fibrillation correlates poorly with atrial fibrillation cycle length”. Circ. Arrhythm Electrophysiol. 3:e1, 2010.

    Article  PubMed  Google Scholar 

  8. Botteron, D., and J. Smith. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42:579–586, 1995.

    Article  CAS  PubMed  Google Scholar 

  9. Censi, F., V. Barbaro, P. Bartolini, G. Calcagnini, A. Michelucci, and S. Cerutti. Non-linear coupling of atrial activation processes during atrial fibrillation in humans. Biol. Cybern. 85:195–201, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Chavez, M., J. Martinerie, and M. Le Van Quyen. Statistical assessment of nonlinear causality: application to epileptic EEG signals. J. Neurosci. Methods 124:113–128, 2003.

    Article  PubMed  Google Scholar 

  11. Courtemanche, M., R. J. Ramirez, and S. Nattel. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275:H301–H321, 1998.

    CAS  PubMed  Google Scholar 

  12. Deisenhofer, I., H. Estner, T. Reents, S. Fichtner, A. Bauer, J. Wu, C. Kolb, B. Zrenner, C. Schmitt, and G. Hessling. Does electrogram guided substrate ablation add to the success of pulmonary vein isolation in patients with paroxysmal atrial fibrillation? A prospective, randomized study. J. Cardiovasc. Electrophysiol. 20:514–521, 2009.

    Article  PubMed  Google Scholar 

  13. Elvan, A., A. C. Linnenbank, M. W. van Bemmel, A. R. R. Misier, P. P. H. M. Delnoy, W. P. Beukema, and J. M. T. de Bakker. Dominant frequency of atrial fibrillation correlates poorly with atrial fibrillation cycle length. Circ. Arrhythm Electrophysiol. 2:634–644, 2009.

    Article  PubMed  Google Scholar 

  14. Faes, L., A. Porta, and G. Nollo. Testing frequency domain causality in multivariate time series. IEEE Trans. Biomed. Eng. 57:1897–1906, 2010.

    PubMed  Google Scholar 

  15. Franaszczuk, P. J., G. K. Bergey, and M. J. Kaminski. Analysis of mesial temporal seizure onset and propagation using the directed transfer function method. Electroencephal. Clin. Neurophysiol. 91:413–427, 1994.

    Article  CAS  Google Scholar 

  16. Freiwald, W., P. Valdes, J. Bosch, R. Biscay, J. Jimenez, L. Rodriguez, V. Rodriguez, A. Kreiter, and W. Singer. Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J. Neurosci. Methods 94:105–119, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–443, 1969.

    Article  Google Scholar 

  18. Grzeda, K. R., S. F. Noujaim, O. Berenfeld, and J. Jalife. Complex fractionated atrial electrograms: properties of time-domain versus frequency-domain methods. Heart Rhythm 6:1475–1482, 2009.

    Article  PubMed  Google Scholar 

  19. Haissaguerre, M., P. Jais, D. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. L. Mouroux, P. L. Métayer, and J. Clémenty. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339:659–666, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Hoekstra, B. P. T., C. G. H. Diks, M. A. Allessie, and J. DeGoede. Non-linear time series analysis: methods and applications to atrial fibrillation. Ann. Ist. Super. Sanità. 37:325–333, 2001.

    CAS  PubMed  Google Scholar 

  21. Jacquemet, V., N. Virag, Z. Ihara, L. Dang, O. Blanc, S. Zozor, J. M. Vesin, L. Kappenberger, and C. Henriquez. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J. Cardiovasc. Electrophysiol. 14:S172–S179, 2003.

    Article  PubMed  Google Scholar 

  22. Moe, G. On the multiple wavelet hypothesis of atrial fibrillation. Arch. Int. Pharmacodyn. Ther. 140:183–188, 1962.

    Google Scholar 

  23. Müller, T., M. Lauk, M. Reinhard, A. Hetzel, C. H. Lücking, and J. Timmer. Estimation of delay times in biological systems. Ann. Biomed. Eng. 31:1423–1439, 2003.

    Article  PubMed  Google Scholar 

  24. Nademanee, K., J. McKenzie, E. Kosar, M. Schwab, B. Sunsaneewitayakul, T. Vasavakul, C. Khunnawat, and T. Ngarmukos. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43:2044–2053, 2004.

    Article  PubMed  Google Scholar 

  25. Ng, J., A. H. Kadish, and J. J. Goldberger. Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm 3:1295–1305, 2006.

    Article  PubMed  Google Scholar 

  26. O’Donnell, D., S. S. Furniss, and J. P. Bourke. Dynamic alterations in right atrial activation during atrial fibrillation. J. Interv. Card. Electrophysiol. 8:37–40, 2003.

    Article  PubMed  Google Scholar 

  27. Oral, H., A. Chugh, E. Good, A. Wimmer, S. Dey, N. Gadeela, S. Sankaran, T. Crawford, J. F. Sarrazin, M. Kuhne, N. Chalfoun, D. Wells, M. Frederick, J. Fortino, S. Benloucif-Moore, K. Jongnarangsin, F. Pelosi, F. Bogun, and F. Morady. Radiofrequency catheter ablation of chronic atrial fibrillation guided by complex electrograms. Circulation 115:2606–2612, 2007.

    Article  PubMed  Google Scholar 

  28. Platonov, P., M. Stridh, and L. Sörnmo. Letter by Platonov et al regarding article “Dominant frequency of atrial fibrillation correlates poorly with atrial fibrillation cycle length”. Circ. Arrhythm Electrophysiol. 3:e4, 2010.

    Article  PubMed  Google Scholar 

  29. Ravelli, F., L. Faes, L. Sandrini, F. Gaita, R. Antolini, M. Scaglione, and G. Nollo. Wave similarity mapping shows the spatiotemporal distribution of fibrillatory wave complexity in the human right atrium during paroxysmal and chronic atrial fibrillation. J. Cardiovasc. Electrophysiol. 16:1071–1076, 2005.

    Article  PubMed  Google Scholar 

  30. Richter, U., A. Bollmann, D. Husser, and M. Stridh. Right atrial organization and wavefront analysis in atrial fibrillation. Med. Biol. Eng. Comput. 47:1237–1246, 2009.

    Article  PubMed  Google Scholar 

  31. Rush, S., and H. Larsen. A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. 25:389–392, 1978.

    Article  CAS  PubMed  Google Scholar 

  32. Saksena, S., N. D. Skadsberg, H. B. Rao, and A. Filipecki. Biatrial and three-dimensional mapping of spontaneous atrial arrhythmias in patients with refractory atrial fibrillation. J. Cardiovasc. Electrophysiol. 16:494–504, 2005.

    Article  PubMed  Google Scholar 

  33. Sanders, P., O. Berenfeld, M. Hocini, P. Jais, R. Vaidyanathan, L. F. Hsu, S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-Snyder, J. Jalife, and M. Haissaguerre. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112:789–797, 2005.

    Article  PubMed  Google Scholar 

  34. Schelter, B., J. Timmer, and M. Eichler. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J. Neurosci. Methods 179(1):121–130, 2009.

    Article  PubMed  Google Scholar 

  35. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6:461–464, 1978.

    Article  Google Scholar 

  36. Sih, H. J., A. V. Sahakian, C. E. Arentzen, and S. Swiryn. A frequency domain analysis of spatial organization of epicardial maps. IEEE Trans. Biomed. Eng. 42:718–727, 1995.

    Article  CAS  PubMed  Google Scholar 

  37. Valdés-Sosa, P. A., J. M. Sánchez-Bornot, A. Lage-Castellanos, M. Vega-Hernández, J. Bosch-Bayard, L. Melie-García, and E. Canales-Rodríguez. Estimating brain functional connectivity with sparse multivariate autoregression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:969–981, 2005.

    Article  PubMed  Google Scholar 

  38. Wilke, C., L. Ding, and B. He. Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans. Biomed. Eng. 55:2557–2564, 2008.

    Article  PubMed  Google Scholar 

  39. Zozor, S., O. Blanc, V. Jacquemet, N. Virag, J. M. Vesin, E. Pruvot, L. Kappenberger, and C. Henriquez. A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans. Biomed. Eng. 50:412–420, 2003.

    Article  PubMed  Google Scholar 

  40. Zrenner, B., G. Ndrepepa, M. R. Karch, M. A. Schneider, J. Schreieck, A. Schömig, and C. Schmitt. Electrophysiologic characteristics of paroxysmal and chronic atrial fibrillation in human right atrium. J. Am. Coll. Cardiol. 38:1143–1149, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Richter.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, U., Faes, L., Cristoforetti, A. et al. A Novel Approach to Propagation Pattern Analysis in Intracardiac Atrial Fibrillation Signals. Ann Biomed Eng 39, 310–323 (2011). https://doi.org/10.1007/s10439-010-0146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0146-8

Keywords

Navigation