Skip to main content
Log in

High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Individuals with mechanical heart valve implants are plagued by flow-induced thromboembolic complications, which are undoubtedly caused by platelet activation. Flow fields in or around the affected regions involve brief exposure to pathologically high-shear stresses on the order of 100 to 1000 dyne/cm2. Although high shear is known to activate platelets directly, their subsequent behavior is not known. We hypothesize that the post-high-shear activation behavior of platelets is particularly relevant in understanding the increased thrombotic risk associated with blood-recirculating prosthetic cardiovascular devices. Purified platelets were exposed to brief (5–40 s) periods of high-shear stress, and then exposed to longer periods (15–60 min) of low shear. Their activation state was measured using a prothrombinase-based assay. Platelets briefly exposed to an initial high-shear stress (e.g., 60 dyne/cm2 for 40 s) activate a little, but this study shows that they are now sensitized, and when exposed to subsequent low shear stress, they activate at least 20-fold faster than platelets not initially exposed to high shear. The results show that platelets in vitro exposed beyond a threshold of high-shear stress are primed for subsequent activation under normal cardiovascular circulation conditions, and they do not recover from the initial high-shear insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akins, C. W. Results with mechanical cardiac valvular prostheses. Ann. Thorac. Surg. 60:1836–1844, 1995.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, G. H., J. D. Hellums, J. Moake, and C. P. Alfrey, Jr. Platelet response to shear stress: changes in serotonin uptake, serotonin release, and ADP induced aggregation. Thromb. Res. 13:1039–1047, 1978.

    Article  CAS  PubMed  Google Scholar 

  3. Aursnes, I., J. Sundal, and T. Nome. Shear stress activation of platelets with subsequent refractoriness. Thromb. Res. 45:29–37, 1987.

    Article  CAS  PubMed  Google Scholar 

  4. Bahou, W. F., L. Scudder, D. Rubenstein, and J. Jesty. A shear-restricted pathway of platelet procoagulant activity is regulated by IQGAP1. J. Biol. Chem. 279:22571–22577, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Bluestein, D. Towards optimization of the thrombogenic potential of blood recirculating cardiovascular devices using modeling approaches. Expert. Rev. Med. Devices 3:267–270, 2006.

    Article  PubMed  Google Scholar 

  6. Bluestein, D., W. Yin, K. Affeld, and J. Jesty. Flow-induced platelet activation in mechanical heart valves. J. Heart Valve Dis. 13:501–508, 2004.

    PubMed  Google Scholar 

  7. Boreda, R., R. S. Fatemi, and S. E. Rittgers. Potential for platelet stimulation in critically stenosed carotid and coronary arteries. J. Vasc. Invest. 1:26–37, 1995.

    Google Scholar 

  8. Bray, P. F. Platelet hyperreactivity: predictive and intrinsic properties. Hematol. Oncol. Clin. North Am. 21:633–645, v–vi, 2007.

  9. Brown, III, C. H., R. F. Lemuth, J. D. Hellums, L. B. Leverett, and C. P. Alfrey. Response of human platelets to shear stress. Trans. Am. Soc. Artif. Intern. Organs 21:35–39, 1975.

    CAS  PubMed  Google Scholar 

  10. Butchart, E. G., A. Ionescu, N. Payne, J. Giddings, G. L. Grunkemeier, and A. G. Fraser. A new scoring system to determine thromboembolic risk after heart valve replacement. Circulation 108(Suppl 1):II68–II74, 2003.

    Google Scholar 

  11. Butchart, E. G., P. A. Lewis, G. L. Grunkemeier, N. Kulatilake, and I. M. Breckenridge. Low risk of thrombosis and serious embolic events despite low-intensity anticoagulation. Experience with 1,004 Medtronic Hall valves. Circulation 78:I66–I77, 1988.

    CAS  PubMed  Google Scholar 

  12. Colantuoni, G., J. D. Hellums, J. L. Moake, and C. P. Alfrey, Jr. The response of human platelets to shear stress at short exposure times. Trans. Am. Soc. Artif. Intern. Organs 23:626–631, 1977.

    CAS  PubMed  Google Scholar 

  13. Davies, T. A., D. L. Drotts, G. J. Weil, and E. R. Simons. Cytoplasmic Ca2+ is necessary for thrombin-induced platelet activation. J. Biol. Chem. 264:19600–19606, 1989.

    CAS  PubMed  Google Scholar 

  14. Edmunds, Jr., L. H. Thrombotic and bleeding complications of prosthetic heart valves. Ann. Thorac. Surg. 44:430–445, 1987.

    Article  PubMed  Google Scholar 

  15. Goldsmith, H. L., and V. T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH Report—Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 55:415–435, 1986.

    CAS  PubMed  Google Scholar 

  16. Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J. Biomech. 32:1107–1112, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Hathcock, J. J. Flow effects on coagulation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 26:1729–1737, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 272:64–70, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14:143–149, 2003.

    Article  CAS  PubMed  Google Scholar 

  20. Kottke-Marchant, K. Importance of platelets and platelet response in acute coronary syndromes. Cleve. Clin. J. Med. 76(Suppl 1):S2–S7, 2009.

    Article  PubMed  Google Scholar 

  21. Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88:1525–1541, 1996.

    CAS  PubMed  Google Scholar 

  22. Leytin, V., D. J. Allen, S. Mykhaylov, L. Mis, E. V. Lyubimov, B. Garvey, and J. Freedman. Pathologic high shear stress induces apoptosis events in human platelets. Biochem. Biophys. Res. Commun. 320:303–310, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Miyazaki, Y., S. Nomura, T. Miyake, H. Kagawa, C. Kitada, H. Taniguchi, Y. Komiyama, Y. Fujimura, Y. Ikeda, and S. Fukuhara. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88:3456–3464, 1996.

    CAS  PubMed  Google Scholar 

  24. Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54:64–72, 2008.

    Article  PubMed  Google Scholar 

  25. Nomura, S. Function and clinical significance of platelet-derived microparticles. Int. J. Hematol. 74:397–404, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Piccin, A., W. G. Murphy, and O. P. Smith. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 21:157–171, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12:113–125, 1979.

    Article  CAS  PubMed  Google Scholar 

  28. Schulz-Heik, K., J. Ramachandran, D. Bluestein, and J. Jesty. The extent of platelet activation under shear depends on platelet count: differential expression of anionic phospholipid and factor Va. Pathophysiol. Haemost. Thromb. 34:255–262, 2005.

    Article  CAS  PubMed  Google Scholar 

  29. Shankaran, H., P. Alexandridis, and S. Neelamegham. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 101:2637–2645, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Sutera, S. P., and M. H. Mehrjardi. Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J. 15:1–10, 1975.

    Article  CAS  PubMed  Google Scholar 

  31. Travis, B. R., U. M. Marzec, H. L. Leo, T. Momin, C. Sanders, S. R. Hanson, and A. P. Yoganathan. Bileaflet aortic valve prosthesis pivot geometry influences platelet secretion and anionic phospholipid exposure. Ann. Biomed. Eng. 29:657–664, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Voisin, P., C. Guimont, and J. F. Stoltz. Experimental investigation of the rheological activation of blood platelets. Biorheology 22:425–435, 1985.

    CAS  PubMed  Google Scholar 

  33. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Wurzinger, L. J., R. Opitz, P. Blasberg, and H. Schmid-Schonbein. Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb. Haemost. 54:381–386, 1985.

    CAS  PubMed  Google Scholar 

  35. Yee, D. L., A. L. Bergeron, C. W. Sun, J. F. Dong, and P. F. Bray. Platelet hyperreactivity generalizes to multiple forms of stimulation. J. Thromb. Haemost. 4:2043–2050, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Yee, D. L., C. W. Sun, A. L. Bergeron, J. F. Dong, and P. F. Bray. Aggregometry detects platelet hyperreactivity in healthy individuals. Blood 106:2723–2729, 2005.

    Article  CAS  PubMed  Google Scholar 

  37. Yin, W., S. Gallocher, L. Pinchuk, R. T. Schoephoerster, J. Jesty, and D. Bluestein. Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve. Artif. Organs 29:826–831, 2005.

    Article  PubMed  Google Scholar 

  38. Yoganathan, A. P., Z. He, and S. Casey Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J. N., A. L. Bergeron, Q. Yu, C. Sun, L. McBride, P. F. Bray, and J. F. Dong. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation. Thromb. Haemost. 90:672–678, 2003.

    CAS  PubMed  Google Scholar 

  40. Zhang, J. N., A. L. Bergeron, Q. Yu, C. Sun, L. V. McIntire, J. A. Lopez, and J. F. Dong. Platelet aggregation and activation under complex patterns of shear stress. Thromb. Haemost. 88:817–821, 2002.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Philip Chiu, Mohammed Hoque, and Thomas Claiborne for their contributions to the experiments in this study. This study was supported by the American Heart Association (Award no. 0340143N, DB) and the National Institutes of Health (Award no. 1R01EB008004-01, DB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolyon Jesty.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheriff, J., Bluestein, D., Girdhar, G. et al. High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions. Ann Biomed Eng 38, 1442–1450 (2010). https://doi.org/10.1007/s10439-010-9936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9936-2

Keywords

Navigation