Skip to main content

Advertisement

Log in

Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 31 August 2016

An Erratum to this article was published on 13 June 2014

Abstract

The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aroesty, J., and J. F. Gross. The mathematics of pulsatile flow in small vessels. I. Casson theory. Microvasc. Res. 4:1–12, 1972.

    Article  CAS  PubMed  Google Scholar 

  2. Behera, D. Textbook of Pulmonary Medicine. Jaypee Brothers Medical Pub, 2010.

  3. Blinder, P., A. Y. Shih, C. Rafie, and D. Kleinfeld. Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl Acad. Sci. USA. 107:12670–12675, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boas, D. A., S. R. Jones, A. Devor, T. J. Huppert, and A. M. Dale. A vascular anatomical network model of the spatio-temporal response to brain activation. NeuroImage 40:1116–1129, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cassot, F., F. Lauwers, C. Fouard, S. Prohaska, and V. Lauwers-Cances. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation 13:1–18, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, V. Cances-Lauwers, and H. Duvernoy. Branching patterns for arterioles and venules of the human cerebral cortex. Brain Res. 1313:62–78, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, and H. Duvernoy. Scaling laws for branching vessels of human cerebral cortex. Microcirculation 16:331–344, 2 p following 344, May 2009.

    Google Scholar 

  8. Delaunay, B. Sur la sphere vide. Bull. Acad. Science USSR VII: Class Sci. Mat., pp. 793–800, 1934.

  9. Devor, A., S. Sakadzic, P. A. Saisan, M. A. Yaseen, E. Roussakis, V. J. Srinivasan, S. A. Vinogradov, B. R. Rosen, R. B. Buxton, A. M. Dale, and D. A. Boas. “Overshoot” of O(2) is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31:13676–13681, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duff, I. S., and J. K. Reid. The design of MA48: A code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22:187–226, 1996.

    Article  Google Scholar 

  11. Duong, T. Q., and S. G. Kim. In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magnetic Resonance in Medicine 43:393–402, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Duvernoy, H. M., S. Delon, and J. L. Vannson. Cortical blood vessels of the human brain. Brain Research Bulletin 7:519–579, 1981.

    Article  CAS  PubMed  Google Scholar 

  13. Espagno, J., L. Arbus, A. Bes, R. Billet, A. Gouaze, Ph. Frerebeau, Y. Lazorthes, G. Salamon, J. Seylaz, and B. Vlahovitch. La circulation cerebrale. Neuro-Chirurgie, 15, 1969.

  14. Fang, Q., S. Sakadzic, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas. Oxygen advection and diffusion in a three- dimensional vascular anatomical network. Optics Express 16:17530–17541, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fletcher, J. Mathematical modeling of the microcirculation. Mathematical Biosciences 38:159–202, 1978.

    Article  Google Scholar 

  16. Fung, Y. C., and B. W. Zweifach. Microcirculation—mechanics of blood flow in capillaries. Annu. Rev. Fluid Mech. 3:189–&, 1971.

    Google Scholar 

  17. Gjedde, A., H. Kuwabara, and A. M. Hakim. Reduction of functional capillary density in human brain after stroke. Journal of Cerebral Blood Flow and Metabolism 10:317–326, 1990.

    Article  CAS  PubMed  Google Scholar 

  18. Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. Journal of Theoretical Biology 206:181–194, 2000.

    Article  CAS  PubMed  Google Scholar 

  19. Gould, I. G., T. Marinnan, C. Maurice, M. Qader, B. Henry, M. Pervais, N. Vaicaitis, Y. Zhu, A. Rogers, and A. A. Linninger. Hemodynamics of cerebral vasculature. Presented at the Proceedings of the 11th International Symposium on Process Systems Engineering, Singapore, 2012.

  20. Guibert, R., C. Fonta, and F. Plouraboue. Cerebral blood flow modeling in primate cortex. Journal of Cerebral Blood Flow and Metabolism 30:1860–1873, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guibert, R., C. Fonta, and F. Plouraboue. A new approach to model confined suspensions flows in complex networks: application to blood flow. Transport in Porous Media 83:171–194, 2010.

    Article  CAS  Google Scholar 

  22. Guibert, R., C. Fonta, L. Risser, and F. Plouraboue. Coupling and robustness of intra-cortical vascular territories. NeuroImage 62:408–417, 2012.

    Article  PubMed  Google Scholar 

  23. Hill, A. V. The combinations of haemoglobin with oxygen and with carbon monoxide. I. Biochem J 7:471–480, 1913.

    Article  CAS  PubMed  Google Scholar 

  24. Hirsch, S., J. Reichold, M. Schneider, G. Szekely, and B. Weber. Topology and hemodynamics of the cortical cerebrovascular system. Journal of Cerebral Blood Flow and Metabolism 32:952–967, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hsu, R., and T. W. Secomb. A Green’s function method for analysis of oxygen delivery to tissue by microvascular networks. Mathematical Biosciences 96:61–78, 1989.

    Article  CAS  PubMed  Google Scholar 

  26. Hunziker, O., H. Frey, and U. Schulz. Morphometric investigations of capillaries in the brain cortex of the cat. Brain Research 65:1–11, 1974.

    Article  CAS  PubMed  Google Scholar 

  27. Huppert, T. J., M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas. A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation. Journal of Cerebral Blood Flow and Metabolism 27:1262–1279, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ito, H., I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Annals of Nuclear Medicine 15:111–116, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. James, K. R., and W. Riha. Convergence criteria for successive overrelaxation. Siam Journal on Numerical Analysis 12:137–143, 1975.

    Article  Google Scholar 

  30. Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiologica Scandinavica 182:215–227, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Karch, R., F. Neumann, M. Neumann, and W. Schreiner. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization. Computers in Biology and Medicine 29:19–38, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Karch, R., F. Neumann, M. Neumann, and W. Schreiner. Staged growth of optimized arterial model trees. Annals of Biomedical Engineering 28:495–511, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Karch, R., F. Neumann, B. K. Podesser, M. Neumann, P. Szawlowski, and W. Schreiner. Fractal properties of perfusion heterogeneity in optimized arterial trees: a model study. Journal of General Physiology 122:307–321, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kasischke, K. A., E. M. Lambert, B. Panepento, A. Sun, H. A. Gelbard, R. W. Burgess, T. H. Foster, and M. Nedergaard. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. Journal of Cerebral Blood Flow and Metabolism 31:68–81, 2011.

    Article  CAS  PubMed  Google Scholar 

  35. Keller, A. L., A. Schuz, N. K. Logothetis, and B. Weber. Vascularization of cytochrome oxidase-rich blobs in the primary visual cortex of squirrel and macaque monkeys. Journal of Neuroscience 31:1246–1253, 2011.

    Article  CAS  PubMed  Google Scholar 

  36. Kreuzer, F. Oxygen supply to tissues: the Krogh model and its assumptions. Experientia 38:1415–1426, 1982.

    Article  CAS  PubMed  Google Scholar 

  37. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. Journal of Physiology 52:409–415, 1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lauwers, F., F. Cassot, V. Lauwers-Cances, P. Puwanarajah, and H. Duvernoy. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. NeuroImage 39:936–948, 2008.

    Article  PubMed  Google Scholar 

  39. Linninger, A. A. Biomedical systems research—New perspectives opened by quantitative medical imaging. Computers & Chemical Engineering 36:1–9, 2012.

    Article  CAS  Google Scholar 

  40. Linninger, A. A., M. R. Somayaji, T. Erickson, X. Guo, and R. D. Penn. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. Journal of Biomechanics 41:2176–2187, 2008.

    Article  PubMed  Google Scholar 

  41. Lipowsky, H. H. Microvascular rheology and hemodynamics. Microcirculation, 12:5–15, 2005.

    Google Scholar 

  42. Lorthois, S., and F. Cassot. Fractal analysis of vascular networks: insights from morphogenesis. Journal of Theoretical Biology 262:614–633, 2010.

    Article  PubMed  Google Scholar 

  43. Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters. NeuroImage 54:2840–2853, 2011.

    Article  CAS  PubMed  Google Scholar 

  44. Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: part I: methodology and baseline flow. NeuroImage 54:1031–1042, 2011.

    Article  CAS  PubMed  Google Scholar 

  45. Mintun, M. A., B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98:6859–6864, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neubauer, J. A., and J. Sunderram. Oxygen-sensing neurons in the central nervous system. Journal of Applied Physiology 96:367–374, 2004.

    Article  CAS  PubMed  Google Scholar 

  47. Niimi, H., Y. Komai, S. Yamaguchi, and J. Seki. Microembolic flow disturbances in the cerebral microvasculature with an arcadal network: a numerical simulation. Clin Hemorheol Microcirc 34:247–255, 2006.

    PubMed  Google Scholar 

  48. Nishimura, N., C. B. Schaffer, B. Friedman, P. D. Lyden, and D. Kleinfeld. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A 104:365–370, 2007.

    Article  CAS  PubMed  Google Scholar 

  49. Nolte, J., and J. W. Sundsten. The human brain: an introduction to its functional anatomy (5th ed.). St. Louis: Mosby, 2002.

    Google Scholar 

  50. Pawlik, G., A. Rackl, and R. J. Bing. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Research 208:35–58, 1981.

    Article  CAS  PubMed  Google Scholar 

  51. Pries, A. Biophysical aspects of blood flow in the microvasculature. Cardiovascular Research 32:657–667, 1995.

    Google Scholar 

  52. Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. Circulation Research 67:826–834, 1990.

    Article  CAS  PubMed  Google Scholar 

  53. Rakusan, K., and P. Wicker. Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise. Cardiovascular Research 24:278–284, 1990.

    Article  CAS  PubMed  Google Scholar 

  54. Reichold, J., M. Stampanoni, A. Lena Keller, A. Buck, P. Jenny, and B. Weber. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29:1429–1443, 2009.

    Google Scholar 

  55. Rhodin, J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. Journal of Ultrastructure Research 25:452–500, 1968.

    Article  CAS  PubMed  Google Scholar 

  56. Risser, L., F. Plouraboue, P. Cloetens, and C. Fonta. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. International Journal of Developmental Neuroscience 27:185–196, 2009.

    Article  PubMed  Google Scholar 

  57. Risser, L., F. Plouraboue, A. Steyer, P. Cloetens, G. Le Duc, and C. Fonta. From homogeneous to fractal normal and tumorous microvascular networks in the brain. Journal of Cerebral Blood Flow and Metabolism 27:293–303, 2007.

    Article  PubMed  Google Scholar 

  58. Rostrup, E., I. Law, M. Blinkenberg, H. B. W. Larsson, A. P. Born, S. Holm, and O. B. Paulson. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. NeuroImage 11:87–97, 2000.

    Article  CAS  PubMed  Google Scholar 

  59. Safaeian, N., M. Sellier, and T. David. A computational model of hemodynamic parameters in cortical capillary networks. J. Theor. Biol. Dec 2 2010.

  60. Sakadzic, S., E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nature Methods 7:755–759, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schneider, M., S. Hirsch, B. Weber, and G. Szekely. Physiologically based construction of optimized 3-D arterial tree models. Med Image Comput Comput Assist Interv 14:404–411, 2011.

    PubMed  Google Scholar 

  62. Schneider, M., J. Reichold, B. Weber, G. Szekely, and S. Hirsch. Tissue metabolism driven arterial tree generation. Medical Image Analysis 16:1397–1414, 2012.

    Article  PubMed  Google Scholar 

  63. Schreiner, W., R. Karch, M. Neumann, F. Neumann, P. Szawlowski, and S. Roedler. Optimized arterial trees supplying hollow organs. Medical Engineering & Physics 28:416–429, 2006.

    Article  Google Scholar 

  64. Sharan, M., E. P. Vovenko, A. Vadapalli, A. S. Popel, and R. N. Pittman. Experimental and theoretical studies of oxygen gradients in rat pial microvessels. Journal of Cerebral Blood Flow and Metabolism 28:1597–1604, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Si, H. TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator, 1.4 ed. Berlin, 2006.

  66. Sorenson, A., G., W. A. Copen, L. Ostergaard, F. S. Buonanno, R. G. Gonsalez, G. Rordorf, B. R. Rosen, L. H. Schwamm, R. M. Weisskoff, and W. J. Koroshetz. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Neuroradiology, 210, 519–527, 1999.

  67. Su, S. W., M. Catherall, and S. Payne. The influence of network structure on the transport of blood in the human cerebral microvasculature. Microcirculation 19:175–187, 2012.

    Article  PubMed  Google Scholar 

  68. Takahashi, T., T. Nagaoka, H. Yanagida, T. Saitoh, A. Kamiya, T. Hein, L. Kuo, and A. Yoshida. A mathematical model for the distribution of hemodynamic parameters in the human retinal microvasculature network. J Biorheol 23:77–86, 2009.

    Article  Google Scholar 

  69. Tang, W., L. Zhang, A. Linninger, R. S. Tranter, and K. Brezinsky. Solving kinetic inversion problems via a physical trust region gauss-newton method. Industrial and Engineering Chemistry Research 44:3626–3637, 2005.

    Article  CAS  Google Scholar 

  70. Tsai, P. S., J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. Journal of Neuroscience 29:14553–14570, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vaičaitis, N. M., B. J. Sweetman, and A. A. Linninger. A computational model of cerebral vasculature, brain tissue, and cerebrospinal fluid. Presented at the 21st European Symposium on Computer-Aided Process Engineering, Greece, 2011.

  72. Voronoi, G. Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik 134:198–287, 1908.

    Google Scholar 

  73. Vovenko, E. Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats. Pflugers Archiv. European Journal of Physiology 437:617–623, 1999.

    Article  CAS  PubMed  Google Scholar 

  74. Vovenko, E. P., and A. E. Chuikin. Oxygen tension in rat cerebral cortex microvessels in acute anemia. Neuroscience and Behavioral Physiology 38:493–500, 2008.

    Article  CAS  PubMed  Google Scholar 

  75. Vovenko, E. P., and A. E. Chuikin. Tissue oxygen tension profiles close to brain arterioles and venules in the rat cerebral cortex during the development of acute anemia. Neuroscience and Behavioral Physiology 40:723–731, 2010.

    Article  CAS  PubMed  Google Scholar 

  76. Weber, B., A. L. Keller, J. Reichold, and N. K. Logothetis. The microvascular system of the striate and extrastriate visual cortex of the macaque. Cerebral Cortex 18:2318–2330, 2008.

    Article  PubMed  Google Scholar 

  77. Yang, Y., W. Engelien, S. Xu, H. Gu, D. A. Silbersweig, and E. Stern. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magnetic Resonance in Medicine 44:680–685, 2000.

    Article  CAS  PubMed  Google Scholar 

  78. Zagzoule, M., and J. P. Marc-Vergnes. A global mathematical model of the cerebral circulation in man. Journal of Biomechanics 19:1015–1022, 1986.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, L. B., K. Kulkarni, M. R. Somayaji, M. Xenos, and A. A. Linninger. Discovery of transport and reaction properties in distributed systems. AIChE Journal 53:381–396, 2007.

    Article  CAS  Google Scholar 

  80. Zhang, L. B., C. Xue, A. Malcolm, K. Kulkarni, and A. A. Linninger. Distributed system design under uncertainty. Industrial and Engineering Chemistry Research 45:8352–8360, 2006.

    Article  CAS  Google Scholar 

  81. Zweifach, B. W. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circulation Research 34:843–857, 1974.

    Article  CAS  PubMed  Google Scholar 

  82. Zweifach, B. W., and H. H. Lipowsky. Quantitative studies of microcirculatory structure and function. III. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circulation Research 41:380–390, 1977.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge NIH for their financial support of this project, NIH-5R21EB004956. The project was also partially supported by NSF grants CBET-0756154 and CBET-1301198. No conflicts of interest were posed in the conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Linninger.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-016-1722-3.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-014-1050-4.

Appendices

Appendix 1: Generation of Mesh-Like Capillary Bed

We invented a novel computational method to synthesize mesh-like capillary networks. A mesh-like capillary bed connected to the arterial and venous trees is essential for the anatomically consistent closure of hemodynamic simulations with the following key properties: (i) even random spacing of desired average segment length (ii) connection to arteriole and venule terminals (iii) adjustable degree of tortuosity, and (iv) smooth diameter transitions from the pre-capillaries to post-capillary venules. To the best of our knowledge, this algorithm for capillary synthesis has never been proposed in the literature.

The methodology encompasses a six step procedure illustrated Fig. 9 frames a–e. In the first step, the computational domain between the terminal nodes of the arterial (a1, a2) and venous (v1) trees is evenly divided by Delaunay triangulation.8 The Delaunay mesh creates an even partition of the intravascular space. This partition is shown in Fig. 9a by triangles for clarity. The new Delaunay nodes are more densely spaced than the arterial and venous terminals (a1, a2, v1). The number of Delaunay nodes controls the desired average capillary segment length in the emerging capillary bed. It is tempting to use the Delaunay edges directly as capillary segments. However, the branching factor of three-dimensional Delaunay meshes is not physiological, easily exceeding 50 edges per node in complex brain geometries, while real capillary meshes have only bifurcations (branching factor of two).

Figure 9
figure 9

Stepwise construction of capillary beds. (a) Delaunay triangulation of the space between the terminal nodes of the arteriole tree (a1, and a2) and the venous tree (v1). Mesh density (shown as triangles for clarity) controls the segment length of the desired capillary bed. (b) Construction of Voronoi tessellation, which is the dual of the Delaunay mesh. (c) Connection of arterial and venous terminal to the closest neighbor capillary node. (d) Bezier curve approximation of capillary segments to adjust desired degree of tortuosity. (e) Network flow simulation yields a pressure field to determine the mean capillary pressure, P. Segments within a desired pressure range, P ± 2σ F, are assigned the smallest capillary diameter, D min = 3 μm. (f) Diameters of capillary segments are according to an iterative averaging scheme, producing smooth transitions form the pre-capillary arterioles to the post–capillary venules. Steps E to F can be repeated to eliminate sharp diameter transitions at the inlets and outlets of the capillary bed

Therefore, we construct the dual mesh, know as a Voronoi tessellation,72 as depicted in Fig. 9b. The Voronoi cells have branching factors of two in two dimensions, and three in for three dimensions. To provide closure, each arterial terminal is connected to the closest capillary node. Similarly, each terminal node of the venous tree is linked to the Voronoi mesh without allowing a venous and an arterial terminal to connect to the same capillary node. In effect, the arterial and the venous trees are linked through the capillary bed creating a closed network structure without dangling segments. The crude Voronoi capillary mesh depicted in Fig. 9c requires three more refinement steps for better physiological match with real capillary beds.

In every capillary node with more than three segment connections, one superfluous segment can be deleted. This process we term pruning is required only three dimensional Voronoi meshes (not shown). We choose to eliminate the shortest edge, whose removal does not leave another node connected to the deleted edge dangling. We refrained from pruning Voronoi trifurcations in which no edge can be removed without causing dangling capillary nodes.

Several researchers have pointed out the significance of the tortuosity in hemodynamic simulations.18 Optionally, we can control tortuosity of capillary segments by Bezier curve interpolation, as depicted in Fig. 9D with detailed mathematical description given in Appendix 2.

The pruned, tortuous capillary bed still requires the reasonable diameters for each segment. A simple choice is constant diameters for all segments, but has the disadvantage of sharp transitions from the arteriole tree to the capillary bed, and from the capillary bed to the venous tree. We propose to enforce smooth diameter transitions with slight tapering coming from the arteriole side and slow diameter increases towards the venous side as follows: We perform blood flow simulations as in Eq. (2)–(3) through the network as a function of segment length and diameter. The mean pressure, P, is defined as the arithmetic mean of all capillary node pressures; σ F is its standard deviation. All segments within the pressure range, P ±  F, were assigned the minimum diameter, D min = 3 μm. Pre- and post capillary segments connecting to arteriole and venule terminals were assigned a diameter commensurate with their parent terminal. For all segments between the terminals and the minimum diameter group, we computed their diameters by iteratively executing the averaging scheme given in Eq. (8). This method for ensuring smooth diameter transitions is similar to physiological regularization techniques. Our level-set type approach gives rise to smooth diameter transitions, which monotonically decreases from inlet pre-capillary vessels to the smallest capillaries, then increase to the post-capillary veins.

$$ {\text{Capillary diameter smoothing}}\;d_{i} = \sum\limits_{j = 1}^{N} {\frac{{d_{i,j} }}{N}} $$
(8)

where d i , j is the diameter of segment j connected to segment i

If needed to further reduce sharp diameter transitions, the flow computations can be repeated with the adjusted diameters. Additional passes of diameter averaging can be performed until a sufficiently smooth diameter transition and spectrum is achieved.

Appendix 2: Cubic Bezier Curves

A cubic Bezier curve is a vector function in terms of the scalar parameter t as defined in Eq. (9). It is defined by two end points, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{0} }} \) and \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{1}}} \) and two control points, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{C}}_{0}}} \) and \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{C}}_{1}}} \) as shown in Panel a of Fig. 10. The endpoints delineate the curve; the control points dictate the shape of the curve.

Figure 10
figure 10

Bezier Curve adjustment of capillary tortuosity. (a) Depiction of a Bezier curve between endpoints, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{\text{P}}_{0} }} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{\text{P}}_{1} }} \) and control points, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{\text{C}}_{0} }} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{\text{C}}_{1} }} \). (b) Automatic generation of control points based on segments connected to the current Bezier segment. (c) Straight line segments. (d) Tortuous capillary segment with Bezier curve parameter, α = 0.25

$$ \overrightarrow {B} \left( t \right) = (1 - t)^{3} \cdot\overrightarrow {{P_{0} }} + 3t\left( {1 - t} \right)^{2} \cdot\overrightarrow {{C_{0} }} + 3t^{2} \left( {1 - t} \right)\cdot\overrightarrow {{C_{1} }} + t^{3} \cdot\overrightarrow {{P_{1} }} t \in [0,1] $$
(9)

For each capillary segment between points \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{0} }} \) and \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{1}}} \), a 3D Bezier curve with desired degree of tortuosity can be constructed. To ensure reasonable transitions between different segments, we derive the control points for a given segment as a function of its neighboring segments. The first step is to find the auxiliary point \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{A}}_{0}}} \), defined as the average of the set of points, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{0,1} }} \) connected to \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{0} }} \) exclusive of \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{1}}} \) as given in Eq. (10). Similarly, auxiliary point \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{A_{1}}} \), is found from the set of points, \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{1,1} }} \) connected to \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{1} }}. \) except for \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{P}}_{0} }}. \)

$$ \begin{gathered} \overrightarrow {{A_{0} }} = \frac{{\mathop \sum \nolimits_{i = 1}^{N} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{0,i}}}{N} \quad \forall \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{0,i} \; {\text{connect to}}\; \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{0} , {\text{except for}}\; \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{1} \hfill \\ \overrightarrow {{A_{1} }} = \frac{{\mathop \sum \nolimits_{i = 1}^{N} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{1,i}}}{N} \quad \forall \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{1,i} \; {\text{connect to}}\; \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{1} , {\text{except}}\; {\text{for}}\; \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{P}_{0} \hfill \\ \end{gathered} $$
(10)

Finally, the desired control \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{C}}_{0}}} \) and \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{{{C}}_{1}}} \) are calculated with Eq. (11), where the scalar α controls the degree of tortuosity: α = 0 produces a straight line, α = 1.0 gives in the most tortuous curve. We recommend a value of α = 0.25 for natural capillary mesh appearance. Sample meshes with and without Bezier vessels are depicted in panels C and D of Fig. 10. Note that arc lengths of Bezier curves given in Eq. (12) in are always greater than the straight line counterpart.

$$ \begin{gathered} \rightharpoonup {{C_{0} }} = \rightharpoonup {{P_{0} }} + \alpha \cdot\left( {\rightharpoonup {{P_{0} }} - \rightharpoonup {{A_{0} }} } \right) \quad \alpha \in [0,1] \hfill \\ \rightharpoonup {{C_{1} }} = \rightharpoonup {{P_{1} }} + \alpha \cdot\left( {\rightharpoonup {{P_{1} }} - \rightharpoonup {{A_{1} }} } \right) \quad \alpha \in [0,1] \hfill \\ \end{gathered} $$
(11)
$$ \begin{gathered} {\text{Analytically arc length}}: \hfill \\ \mathop \int \limits_{0}^{1} \left| {\dot{B}(t)} \right| dt = \mathop \int \limits_{0}^{1} \sqrt {\sum\nolimits_{i = x,y,z} {\left[ {\frac{{dB_{i} (t)}}{dt}} \right]^{2} } } dt \quad {\text{where}}\; B_{i} \left( t \right) {\text{ are the components of}}\;B\left( {\text{t}} \right) \hfill \\ {\text{Numerically}} \hfill \\ \mathop \int \limits_{0}^{1} \sqrt {\sum\nolimits_{i = x,y,z} {\left[ {\frac{{dB_{i} (t)}}{dt}} \right]^{2} } } dt \approx \mathop \sum \limits_{{t_{j} }}^{M} \left\{ \begin{gathered} \left. {\root{{}} \of {{\sum\nolimits_{i = x,y,z} {\left[ {\frac{{\Updelta B_{i} \left( t \right)}}{{\Updelta t_{j} }}} \right]^{2} } }} \Updelta t_{j} } \right\} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$
(12)

where \( \frac{{\Updelta B_{i} (t)}}{{\Updelta t_{j} }}\) are the numerical derivatives of the components of B(t) along the arc t

Appendix 3: Krogh Cylinder: Discrete and Analytical Solution

At the request of one reviewer, we also included a comparison of our dual mesh technique with an analytical Krogh model. Even though the Krogh cylinder offers an analytical solution to the oxygen diffusion with 0th order reaction, it has several limitations including the lack of axial dispersion which makes it imperfect for numerical validation studies.36 Several extension of the Krogh model have been proposed by Secomb,25 but approaches like Green’s function are beyond the intended scope of numerical validation of our network.

We plotted the results for a cylindrical domain with a single blood vessel in its center as described in Krogh’s original work.37 The analytical radial concentration profiles, C(r,z) at different levels of the axial coordinate are given Eq. (13) and Eq. (14) as a function of the product of the inlet concentration, C 0, and the bulk velocity, V, the radius of the vessel, r C, the thickness of the wall t m, the radius of the tissue cylinder, r T, and the zero order rate of solute destruction in the tissue, R 0, and the diffusion of the solute in tissue, D. The concentration of solute in the tissue at the wall boundary, \( \overline{C}_{{r_{c + tm} }} \) equal to the flux of transport through the vessel governed by the mass transport coefficient, K 0, as shown in Eq. (14). Finally, Eq. (14) includes the axial concentration profile inside the blood vessel, C(z), at the axial coordinate, z. The radial and axial solute gradients were computed for the analytic solution as shown in Fig. 11.

Figure 11
figure 11

Krogh cylinder solution of tissue oxygen perfusion from a single vessel, comparison of analytical and discrete methods. (a) Analytical solution of a Krogh cylinder with capillary radius (r C = 5 μm) and capillary length (L = 1000 μm) and surrounding tissue radius (r T = 40 μm) and a constant injection of solute (C 0 = 5 μM/mL). This radial distribution was determined at z = 570 μm. (b) Solution of the same system using the discrete approach described in this paper. (c) Discrete radial concentration of solute compared to realizations of the analytical solution for z = 569 mm and z = 571 mm (d) axial distribution of oxygen between the analytical and the discrete solution

$$ \begin{gathered} C\left( {z,r} \right) = \overline{C}_{{r_{\text{C}} + t_{\text{m}} }} + \frac{{R_{0} }}{{4D_{T} }}\left[ {r^{2} - \left( {r_{\text{c}} + t_{\text{m}} } \right)^{2} } \right] - \frac{{R_{0} r_{\text{T}}^{2} }}{{2D_{\text{T}} }}\ln \frac{r}{{r_{C} + t_{m} }} \hfill \\ {\text{with}}\quad \overline{C}_{{r_{\text{C}} + t_{\text{m}} }} = C(z) - \frac{{R_{0} }}{{2r_{\text{C}} K_{0} }}r_{*}^{2} \hfill \\ \end{gathered} $$
(13)
$$ C\left( z \right) = C_{0} - \frac{{R_{0} }}{{Vr_{c}^{2} }}r_{*}^{2}\;z,\quad r_{*}^{2} = \left[ {r_{\text{T}}^{2} - (r_{\text{c}} + t_{\text{m}} )^{2} } \right] $$
(14)

We compare oxygen extraction numerically computer with our model to the analytical Krogh model.15 The central blood vessel was discretized with cylindrical segments of Δz = 8 μm in length. A relatively coarse tetrahedral mesh to represent the extravascular space was constructed with the same dimensions, a mesh edge length of 34 μm, which is the same resolution as used the main paper. Flow, oxygen inlet concentration, mass transfer and 0th order oxygen consumption were implemented with the same parameters as in the Krogh model listed compactly in Table 4. Figure 11 summarize the results for the analytical and the numerical methods described in this work. Radial oxygen profiles of all tetrahedral cells falling with at an axial range of z = 570 ± 1 mm were plotted as dots in Fig. 11. For the analytical solution, two profiles were drawn for z = 569 mm and z = 571 mm, corresponding to the extreme axial positions of the tetrahedral elements in that zone. The analytical and our numerical results are in excellent agreement as expected.

Table 4 Parameters of distribution using the Krogh model

For completeness, we also checked total oxygen exchange and plotted the radial oxygen profiles. Although the total oxygen exchange matches exactly within numerical tolerances, the extraction profile along the axis cannot be identical as expected. This result is valid, as the Krogh model neglects axial dispersion, while our model does not. Therefore the slight mismatch is actually a confirmation of the quality of the proposed technique.

Additionally, a molar balance was constructed to determine the soundness of the discrete method and enforcement of mass conservation. The rate of 5 μmole/cm3 entering the cylinder at a velocity of 500 μm/s with a cross sectional area of 78.5 μm2 gives an inlet flux of 19.63 × 10−8 μmole/s. The outlet concentration from cylinder was determined as 3.74 μmole/cm3 in the analytical, and 3.72 μmole/cm3 in the discrete model. These outlet concentrations give rise to an outlet flux of 14.69 × 10−8 μmole/s in the analytical solution and 14.61 × 10−8 μmole/s in the discrete model. The volume of the tissue cylinder (total tissue cylinder volume minus the vessel volume) is 4.93 × 106 μm3 in the analytical domain and 4.98 × 106 μm3 in the discrete domain, giving a volumetric 0th order reaction rate of 4.93 × 10−8 μmole/s and 4.98 × 10−8 μmole/s, respectively. This compares to the 0th destruction rate computed by the analytical and discrete methods with a reported numeric error <0.002. This error scales accordingly for the large microvessel subsection model presented in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linninger, A.A., Gould, I.G., Marinnan, T. et al. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex. Ann Biomed Eng 41, 2264–2284 (2013). https://doi.org/10.1007/s10439-013-0828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0828-0

Keywords

Navigation