Skip to main content

Advertisement

Log in

A Physiological Perspective on the Use of Imaging to Assess the In Vivo Delivery of Therapeutics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Our goal is to provide a physiological perspective on the use of imaging to optimize and monitor the accumulation of nanotherapeutics within target tissues, with an emphasis on evaluating the pharmacokinetics of organic particles. Positron emission tomography (PET), magnetic resonance imaging (MRI) and ultrasound technologies, as well as methods to label nanotherapeutic constructs, have created tremendous opportunities for preclinical optimization of therapeutics and for personalized treatments in challenging disease states. Within the methodology summarized here, the accumulation of the construct is estimated directly from the image intensity. Particle extravasation is then estimated based on classical physiological measures. Specifically, the transport of nanotherapeutics is described using the concept of apparent permeability, which is defined as the net flux of solute across a blood vessel wall per unit surface area of the blood vessel and per unit solute concentration difference across the blood vessel wall. The apparent permeability to small molecule MRI constructs is accurately shown to be far larger than that estimated for proteins such as albumin or nanoconstructs such as liposomes. Further, the quantitative measurements of vascular permeability are shown to facilitate detection of the transition from a pre-malignant to a malignant cancer and to quantify the delivery enhancement resulting from interventions such as ultrasound. While PET-based estimates facilitate quantitative comparisons of many constructs, high field MRI proves useful in the visualization of model drugs within small lesions and in the evaluation of the release and intracellular trafficking of nanoparticles and cargo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abou, D. S., D. L. Thorek, N. N. Ramos, M. W. Pinkse, H. T. Wolterbeek, S. D. Carlin, B. J. Beattie, and J. S. Lewis. 89Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm. Res. 30:878–888, 2013.

    CAS  PubMed  Google Scholar 

  2. Ahmad, M. Z., S. Akhter, Z. Rahman, S. Akhter, M. Anwar, N. Mallik, and F. J. Ahmad. Nanometric gold in cancer nanotechnology: current status and future prospect. J. Pharm. Pharmacol. 65:634–651, 2013.

    CAS  PubMed  Google Scholar 

  3. Ahmed, M., W. E. Monsky, G. Girnun, A. Lukyanov, G. D’Ippolito, J. B. Kruskal, K. E. Stuart, V. P. Torchilin, and S. N. Goldberg. Radiofrequency thermal ablation sharply increases intratumoral liposomal doxorubicin accumulation and tumor coagulation. Cancer Res. 63:6327–6333, 2003.

    CAS  PubMed  Google Scholar 

  4. Alkilany, A. M., S. E. Lohse, and C. J. Murphy. The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc. Chem. Res. 46:650–661, 2013.

    CAS  PubMed  Google Scholar 

  5. Alkins, R., A. Burgess, M. Ganguly, G. Francia, R. Kerbel, W. S. Wels, and K. Hynynen. Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res. 73:1892–1899, 2013.

    CAS  PubMed  Google Scholar 

  6. Andreopoulos, D., L. Kasi, E. Edmund Kim, M. Diaz, D. J. Yang, and P. J. Asimacopoulos. Detection of acute postoperative mediastinitis in mice using 99mTc-liposomes. Investig. Radiol. 37:435–439, 2002.

    Google Scholar 

  7. Awasthi, V., B. Goins, R. Klipper, R. Loredo, D. Korvick, and W. T. Phillips. Imaging experimental osteomyelitis using radiolabeled liposomes. J. Nucl. Med. 39:1089–1094, 1998.

    CAS  PubMed  Google Scholar 

  8. Bale, R., and G. Widmann. Navigated CT-guided interventions. Minim. Invasive Ther. Allied Technol. 16:196–204, 2007.

    PubMed  Google Scholar 

  9. Bao, A., B. Goins, R. Klipper, G. Negrete, M. Mahindaratne, and W. T. Phillips. A novel liposome radiolabeling method using 99mTc-“SNS/S” complexes: in vitro and in vivo evaluation. J. Pharm. Sci. 92:1893–1904, 2003.

    CAS  PubMed  Google Scholar 

  10. Barentsz, J. O., O. Berger-Hartog, J. A. Witjes, C. Hulsbergen-van der Kaa, G. O. N. Oosterhof, J. A. W. M. VanderLaak, H. Kondacki, and S. H. J. Ruijs. Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 207:791–797, 1998.

  11. Bhattacharyya, S., K. Kurdziel, L. Wei, L. Riffle, G. Kaur, G. C. Hill, P. M. Jacobs, J. L. Tatum, J. H. Doroshow, and J. D. Kalen. Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl. Med. Biol. 40:451–457, 2013.

    CAS  PubMed  Google Scholar 

  12. Blockley, N. P., L. Jiang, A. G. Gardener, C. N. Ludman, S. T. Francis, and P. A. Gowland. Field strength dependence of R(1) and R(2)* relaxivities of human whole blood to ProHance, vasovist, and deoxyhemoglobin. Magn. Reson. Med. 60:1313–1320, 2008.

    CAS  PubMed  Google Scholar 

  13. Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J. Nucl. Med. 50:11s–20s, 2009.

    CAS  PubMed  Google Scholar 

  14. Brix, G., W. Semmler, R. Port, L. R. Schad, G. Layer, and W. J. Lorenz. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J. Comput. Assist. Tomogr. 15:621–628, 1991.

    CAS  PubMed  Google Scholar 

  15. Chang, A. J., R. A. De Silva, and S. E. Lapi. Development and characterization of 89Zr-labeled panitumumab for immuno-positron emission tomographic imaging of the epidermal growth factor receptor. Mol. Imaging 12:17–27, 2013.

    CAS  PubMed  Google Scholar 

  16. Chen, X., K. J. Barkauskas, B. D. Weinberg, J. L. Duerk, F. W. Abdul-Karim, S. Paul, and G. M. Saidel. Dynamics of MRI-guided thermal ablation of VX2 tumor in paraspinal muscle of rabbits. IEEE Trans. Biomed. Eng. 55:1004–1014, 2008.

    PubMed  Google Scholar 

  17. Cho, H., T. C. Lai, and G. S. Kwon. Poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J. Controlled Release 166:1–9, 2013.

    CAS  Google Scholar 

  18. Cline, H. E., K. Hynynen, C. J. Hardy, R. D. Watkins, J. F. Schenck, and F. A. Jolesz. MR temperature mapping of focused ultrasound surgery. Magn. Reson. Med. 31:628–636, 1994.

    CAS  PubMed  Google Scholar 

  19. Curry, F. R. E., C. B. Rygh, T. Karlsen, H. Wiig, R. H. Adamson, J. F. Clark, Y. C. Lin, B. Gassner, F. Thorsen, I. Moen, O. Tenstad, M. Kuhn, and R. K. Reed. Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume. J. Physiol. Lond. 588:325–339, 2010.

    CAS  PubMed  Google Scholar 

  20. Dams, E. T., M. M. Reijnen, W. J. Oyen, O. C. Boerman, P. Laverman, G. Storm, J. W. van der Meer, F. H. Corstens, and H. van Goor. Imaging experimental intraabdominal abscesses with 99mTc-PEG liposomes and 99mTc-HYNIC IgG. Ann. Surg. 229:551–557, 1999.

    CAS  PubMed  Google Scholar 

  21. Daniel, M. C., and D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346, 2004.

    CAS  PubMed  Google Scholar 

  22. Delli Castelli, D., W. Dastrù, E. Terreno, E. Cittadino, F. Mainini, E. Torres, M. Spadaro, and S. Aime. In vivo MRI multicontrast kinetic analysis of the uptake and intracellular trafficking of paramagnetically labeled liposomes. J. Controlled Release 144: 271–279, 2010.

    Google Scholar 

  23. Deri, M. A., B. M. Zeglis, L. C. Francesconi, and J. S. Lewis. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl. Med. Biol. 40:3–14, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Desale, S. S., S. M. Cohen, Y. Zhao, A. V. Kabanov, and T. K. Bronich. Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J. Controlled Release 2013, in press.

  25. Devoogdt, N., C. Xavier, S. Hernot, I. Vaneycken, M. D’Huyvetter, J. De Vos, S. Massa, P. De Baetselier, V. Caveliers, and T. Lahoutte. Molecular imaging using Nanobodies: a case study. Methods Mol. Biol. (Clifton, NJ) 911:559–567, 2012.

    Google Scholar 

  26. Dewhirst, M. W., Z. Vujaskovic, E. Jones, and D. Thrall. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperth. 21:779–790, 2005.

    Google Scholar 

  27. Dong, H., N. Dube, J. Y. Shu, J. W. Seo, L. M. Mahakian, K. W. Ferrara, and T. Xu. Long-circulating 15 nm micelles based on amphiphilic 3-helix peptide-PEG conjugates. ACS Nano 6:5320–5329, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Dreher, M. R., W. G. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, and A. Chilkoti. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 98:335–344, 2006.

    CAS  PubMed  Google Scholar 

  29. Epenetos, A. A., D. Snook, H. Durbin, P. M. Johnson, and J. Taylor-Papadimitriou. Limitations of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res. 46:3183–3191, 1986.

    CAS  PubMed  Google Scholar 

  30. Erlemann, R., M. F. Reiser, P. E. Peters, P. Vasallo, B. Nommensen, C. R. Kusnierzglaz, J. Ritter, and A. Roessner. Musculoskeletal neoplasms—static and dynamic Gd-DTPA Enhanced MR imaging. Radiology 171:767–773, 1989.

    CAS  PubMed  Google Scholar 

  31. Erlemann, R., J. Sciuk, A. Bosse, J. Ritter, C. R. Kusnierzglaz, P. E. Peters, and P. Wuisman. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy—assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175:791–796, 1990.

    CAS  PubMed  Google Scholar 

  32. Fite, B. Z., Y. Liu, D. E. Kruse, C. F. Caskey, J. H. Walton, C. Y. Lai, L. M. Mahakian, B. Larrat, E. Dumont, and K. W. Ferrara. Magnetic resonance thermometry at 7T for real-time monitoring and correction of ultrasound induced mild hyperthermia. PLoS ONE 7:e35509, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Frenkel, V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 60:1193–1208, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Fry, F. J., H. W. Ades, and W. J. Fry. Production of reversible changes in the central nervous system by ultrasound. Science 127:83–84, 1958.

    CAS  PubMed  Google Scholar 

  35. Fry, W. J., and F. Dunn. Ultrasonic irradiation of the central nervous system at high sound levels. J. Acoust. Soc. Am. 28:129–131, 1956.

    Google Scholar 

  36. Fry, W. J., V. J. Wulff, D. Tucker, and F. J. Fry. Physical factors involved in ultrasonically induced changes in living systems: identification of non-temperature effects. J. Acoust. Soc. Am. 22:867–876, 1950.

    Google Scholar 

  37. Gaber, M. H., N. Z. Wu, K. Hong, S. K. Huang, M. W. Dewhirst, and D. Papahadjopoulos. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 36:1177–1187, 1996.

    CAS  PubMed  Google Scholar 

  38. Gabizon, A., D. C. Price, J. Huberty, R. S. Bresalier, and D. Papahadjopoulos. Effect of Liposome composition and other factors on the targeting of liposomes to experimental-tumors—biodistribution and imaging studies. Cancer Res. 50:6371–6378, 1990.

    CAS  PubMed  Google Scholar 

  39. Gabizon, A., H. Shmeeda, and Y. Barenholz. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 42:419–436, 2003.

    CAS  PubMed  Google Scholar 

  40. Gagnon, M. K. J., S. H. Hausner, J. Marik, C. K. Abbey, J. F. Marshall, and J. L. Sutcliffe. High-throughput in vivo screening of targeted molecular imaging agents. Proc. Natl. Acad. Sci. 106:17904–17909, 2009.

    CAS  PubMed  Google Scholar 

  41. Goldberg, S. N., and M. Ahmed. Minimally invasive image-guided therapies for hepatocellular carcinoma. J. Clin. Gastroenterol. 35:S115–S129, 2002.

    CAS  PubMed  Google Scholar 

  42. Gore, J. C., H. C. Manning, C. C. Quarles, K. W. Waddell, and T. E. Yankeelov. Magnetic resonance in the era of molecular imaging of cancer. Magn. Reson. Imaging 29:587–600, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Hackel, B. J., R. H. Kimura, Z. Miao, H. Liu, A. Sathirachinda, Z. Cheng, F. T. Chin, and S. S. Gambhir. 18F-fluorobenzoate-labeled cystine knot peptides for PET imaging of integrin alphavbeta6. J. Nucl. Med. 54:1101–1105, 2013.

    CAS  PubMed  Google Scholar 

  44. Hajitou, A., R. Pasqualini, and W. Arap. Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc. Med. 16:80–88, 2006.

    CAS  PubMed  Google Scholar 

  45. Hausner, S. H., R. D. Carpenter, N. Bauer, and J. L. Sutcliffe. Evaluation of an integrin alphavbeta6-specific peptide labeled with [18F]fluorine by copper-free, strain-promoted click chemistry. Nucl. Med. Biol. 40:233–239, 2013.

    CAS  PubMed  Google Scholar 

  46. Hawighorst, H., P. G. Knapstein, U. Schaeffer, M. V. Knopp, G. Brix, U. Hoffman, I. Zuna, M. Essig, and G. vanKaick. Pelvic lesions in patients with treated cervical carcinoma: efficacy of pharmacokinetic analysis of dynamic MR images in distinguishing recurrent tumors from benign conditions. Am. J. Roentgenol. 166:401–408, 1996.

    Google Scholar 

  47. Hawighorst, H., P. G. Knapstein, W. Weikel, M. V. Knopp, I. Zuna, A. Knof, G. Brix, U. Schaeffer, C. Wilkens, S. O. Schoenberg, M. Essig, P. Vaupel, and G. vanKaick. Angiogenesis of uterine cervical carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement. Cancer Res. 57:4777–4786, 1997.

    Google Scholar 

  48. Holland, J. P., V. Divilov, N. H. Bander, P. M. Smith-Jones, S. M. Larson, and J. S. Lewis. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 51:1293–1300, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Howseman, A. M., and R. W. Bowtell. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philos. Trans. R. Soc. B 354:1179–1194, 1999.

    CAS  Google Scholar 

  50. Hulka, C. A., B. L. Smith, D. C. Sgroi, L. J. Tan, W. B. Edmister, J. P. Semple, T. Campbell, D. B. Kopans, T. J. Brady, and R. M. Weisskoff. Benign and malignant breast-lesions—differentiation with echo-planar MR-imaging. Radiology 197:33–38, 1995.

    CAS  PubMed  Google Scholar 

  51. Hynynen, K., A. Darkazanli, E. Unger, and J. F. Schenck. MRI-Guided noninvasive ultrasound surgery. Med. Phys. 20:107–115, 1993.

    CAS  PubMed  Google Scholar 

  52. Jacobson, O., L. Zhu, G. Niu, I. D. Weiss, L. P. Szajek, Y. Ma, X. Sun, Y. Yan, D. O. Kiesewetter, S. Liu, and X. Chen. MicroPET imaging of integrin alphavbeta3 expressing tumors using 89Zr-RGD peptides. Mol. Imaging Biol. 13:1224–1233, 2011.

    PubMed Central  PubMed  Google Scholar 

  53. Johnson, R. P., Y. I. Jeong, J. V. John, C. W. Chung, D. H. Kang, M. Selvaraj, H. Suh, and I. Kim. Dual stimuli-responsive poly(N-isopropylacrylamide)-b-poly(l-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Biomacromolecules 14:1434–1443, 2013.

    CAS  PubMed  Google Scholar 

  54. Jones, E. L., J. R. Oleson, L. R. Prosnitz, T. V. Samulski, Z. Vujaskovic, D. H. Yu, L. L. Sanders, and M. W. Dewhirst. Randomized trial of hyperthermia and radiation for superficial tumors. J. Clin. Oncol. 23:3079–3085, 2005.

    PubMed  Google Scholar 

  55. Judenhofer, M. S., and S. R. Cherry. Applications for preclinical PET/MRI. Semin. Nucl. Med. 43:19–29, 2013.

    PubMed  Google Scholar 

  56. Key, J., C. Cooper, A. Y. Kim, D. Dhawan, D. W. Knapp, K. Kim, J. H. Park, K. Choi, I. C. Kwon, K. Park, and J. F. Leary. In vivo NIRF and MR dual-modality imaging using glycol chitosan nanoparticles. J. Controlled Release 163:249–255, 2012.

    CAS  Google Scholar 

  57. Kheirolomoom, A., D. E. Kruse, S. Qin, K. E. Watson, C.-Y. Lai, L. J. T. Young, R. D. Cardiff, and K. W. Ferrara. Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system. J. Controlled Release 141:128–136, 2010.

    CAS  Google Scholar 

  58. Kim, S. M., M. A. Haider, M. Milosevic, and I. W. Yeung. A comparison of dynamic contrast-enhanced CT and MR imaging-derived measurements in patients with cervical cancer. Clin. Physiol. Funct. Imaging 33:150–161, 2013.

    PubMed  Google Scholar 

  59. Klibanov, A. L., K. Maruyama, V. P. Torchilin, and L. Huang. Amphipathic polyethylene glycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235–237, 1990.

    CAS  PubMed  Google Scholar 

  60. Knopp, M. V., N. Himmelhan, J. Radeleff, H. Junkermann, T. Hess, H. P. Sinn, and G. Brix. Comparison of quantification techniques for dynamic contrast enhancement MRI analyzed using MR mammography. Radiologe 42:280–290, 2002.

    CAS  PubMed  Google Scholar 

  61. Langereis, S., J. Keupp, J. L. J. van Velthoven, I. H. C. de Roos, D. Burdinski, J. A. Pikkemaat, and H. Gruell. A temperature-sensitive liposomal H-1 CEST and F-19 contrast agent for MR image-guided drug delivery. J. Am. Chem. Soc. 131:1380–1381, 2009.

    Google Scholar 

  62. Laverman, P., E. T. Dams, W. J. Oyen, G. Storm, E. B. Koenders, R. Prevost, J. W. van der Meer, F. H. Corstens, and O. C. Boerman. A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J. Nucl. Med. 40:192–197, 1999.

    CAS  PubMed  Google Scholar 

  63. Lee, S. Y., H. S. Park, K. Y. Lee, H. J. Kim, Y. J. Jeon, T. W. Jang, K. H. Lee, Y. C. Kim, K. S. Kim, I. J. Oh, and S. Y. Kim. Paclitaxel-loaded polymeric micelle (230 mg/m(2)) and cisplatin (60 mg/m(2)) vs. paclitaxel (175 mg/m(2)) and cisplatin (60 mg/m(2)) in advanced non-small-cell lung cancer: a multicenter randomized phase IIB trial. Clin. Lung Cancer 14:275–282, 2013.

    CAS  PubMed  Google Scholar 

  64. Lencioni, R., and L. Crocetti. Image-guided thermal ablation of hepatocellular carcinoma. Crit. Rev. Oncol. Hematol. 66:200–207, 2008.

    PubMed  Google Scholar 

  65. Liu, S., M. Hassink, R. Selvaraj, L. P. Yap, R. Park, H. Wang, X. Chen, J. M. Fox, Z. Li, and P. S. Conti. Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation. Mol. Imaging 12:121–128, 2013.

    CAS  PubMed  Google Scholar 

  66. Liu, D., D. Overbey, L. D. Watkinson, C. J. Smith, S. Daibes-Figueroa, T. J. Hoffman, L. R. Forte, W. A. Volkert, and M. F. Giblin. Comparative evaluation of three 64Cu-labeled E. coli heat-stable enterotoxin analogues for PET imaging of colorectal cancer. Bioconjug. Chem. 21:1171–1176, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Logan, J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl. Med. Biol. 27:661–670, 2000.

    CAS  PubMed  Google Scholar 

  68. Lynn, J. G., R. L. Zwemer, A. J. Chick, and A. E. Miller. A new method for the generation and use of focused ultrasound in experimental biology. J. Gen. Physiol. 26:179–193, 1942.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Marik, J., M. S. Tartis, H. Zhang, J. Y. Fung, A. Kheirolomoom, J. L. Sutcliffe, and K. W. Ferrara. Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). Nucl. Med. Biol. 34:165–171, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Meijs, W. E., J. D. Herscheid, H. J. Haisma, and H. M. Pinedo. Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Int. J. Radiat. Appl. Instrum. A 43:1443–1447, 1992.

    CAS  Google Scholar 

  71. Ng, T., J. R. Bading, R. Park, H. Sohi, D. Procissi, D. Colcher, P. S. Conti, S. R. Cherry, A. A. Raubitschek, and R. E. Jacobs. Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J. Nucl. Med. 53:1102–1109, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Edit. 40:4128–4158, 2001.

    CAS  Google Scholar 

  73. Ogihara, I., S. Kojima, and M. Jay. Differential uptake of gallium-67-labeled liposomes between tumors and inflammatory lesions in rats. J. Nucl. Med. 27:1300–1307, 1986.

    CAS  PubMed  Google Scholar 

  74. Ogihara-Umeda, I., T. Sasaki, S. Kojima, and H. Nishigori. Optimal radiolabeled liposomes for tumor imaging. J. Nucl. Med. 37:326–332, 1996.

    CAS  PubMed  Google Scholar 

  75. Ogihara-Umeda, I., T. Sasaki, H. Toyama, K. Oda, M. Senda, and H. Nishigori. Rapid diagnostic imaging of cancer using radiolabeled liposomes. Cancer Detect. Prev. 21:490–496, 1997.

    CAS  PubMed  Google Scholar 

  76. Paoli, E. E., D. E. Kruse, J. W. Seo, H. Zhang, A. Kheirolomoom, K. D. Watson, P. Chiu, H. Stahlberg, and K. W. Ferrara. An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: importance of formulation. J. Controlled Release 143:13–22, 2010.

    CAS  Google Scholar 

  77. Parker, D. L. Applications of NMR imaging in hyperthermia—an evaluation of the potential for localized tissue heating and noninvasive temperature monitoring. IEEE Trans. Biomed. Eng. 31:161–167, 1984.

    CAS  PubMed  Google Scholar 

  78. Parker, D. L., V. Smith, P. Sheldon, L. E. Crooks, and L. Fussell. Temperature distribution measurements in two-dimensional NMR imaging. Med. Phys. 10:321–325, 1983.

    CAS  PubMed  Google Scholar 

  79. Perrault, S. D., C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9:1909–1915, 2009.

    CAS  PubMed  Google Scholar 

  80. Persson, M., H. Liu, J. Madsen, Z. Cheng, and A. Kjaer. First 18F-labeled ligand for PET imaging of uPAR: in vivo studies in human prostate cancer xenografts. Nucl. Med. Biol. 40:618–624, 2013.

    CAS  PubMed  Google Scholar 

  81. Peters, R. D., R. S. Hinks, and R. M. Henkelman. Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn. Reson. Med. 40:454–459, 1998.

    CAS  PubMed  Google Scholar 

  82. Phillips, W. T., A. S. Rudolph, B. Goins, J. H. Timmons, R. Klipper, and R. Blumhardt. A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Int. J. Radiat. Appl. Instrum. 19:539–547, 1992.

    CAS  Google Scholar 

  83. Ponce, A. M., B. L. Viglianti, D. H. Yu, P. S. Yarmolenko, C. R. Michelich, J. Woo, M. B. Bally, and M. W. Dewhirst. Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J. Natl Cancer Inst. 99:53–63, 2007.

    CAS  PubMed  Google Scholar 

  84. Poon, J., M. Dahlbom, W. Moses, K. Balakrishnan, W. Wang, S. Cherry, and R. Badawi. Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study. Phys. Med. Biol. 57:4077, 2012.

    PubMed Central  PubMed  Google Scholar 

  85. Qin, S., J. W. Seo, H. Zhang, J. Qi, F. R. Curry, and K. W. Ferrara. An imaging-driven model for liposomal stability and circulation. Mol. Pharm. 7:12–21, 2010.

    PubMed Central  PubMed  Google Scholar 

  86. Quesson, B., J. A. de Zwart, and C. T. W. Moonen. Magnetic resonance temperature imaging for guidance of thermotherapy. J. Magn. Reson. Imaging 12:525–533, 2000.

    CAS  PubMed  Google Scholar 

  87. Reddick, W. E., R. Bhargava, J. S. Taylor, W. H. Meyer, and B. D. Fletcher. Dynamic contrast-enhanced MR imaging evaluation of osteosarcoma response to neoadjuvant chemotherapy. J. Magn. Reson. Imaging 5:689–694, 1995.

    CAS  PubMed  Google Scholar 

  88. Rieke, V., and K. Butts Pauly. MR thermometry. J. Magn. Reson. Imaging 27:376–390, 2008.

  89. Roemer, R. B. Engineering aspects of hyperthermia therapy. Annu. Rev. Biomed. Eng. 1:347–376, 1999.

    CAS  PubMed  Google Scholar 

  90. Rossin, R., D. Pan, K. Qi, J. L. Turner, X. Sun, K. L. Wooley, and M. J. Welch. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J. Nucl. Med. 46:1210–1218, 2005.

    PubMed  Google Scholar 

  91. Rybak, J., E. Trachsel, J. Scheuermann, and D. Neri. Ligand-based vascular targeting of disease. ChemMedChem 2:22–40, 2007.

    CAS  PubMed  Google Scholar 

  92. Rygh, C. B., S. Qin, J. W. Seo, L. M. Mahakian, H. Zhang, R. Adamson, J. Q. Chen, A. D. Borowsky, R. D. Cardiff, R. K. Reed, F. R. Curry, and K. W. Ferrara. Longitudinal investigation of permeability and distribution of macromolecules in mouse malignant transformation using PET. Clin. Cancer Res. 17:550–559, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Schoonooghe, S., D. Laoui, J. A. Van Ginderachter, N. Devoogdt, T. Lahoutte, P. De Baetselier, and G. Raes. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology 217:1266–1272, 2012.

    CAS  PubMed  Google Scholar 

  94. Sedlacek, H. H., G. Seeman, D. Hoffman, L. P. Czech, C. Kolar, and K. Bossler. Antibodies as carriers of cytotoxicity. In: Contributions to Oncology, 1st edn, edited by H. H. Sedlacek et al. New York: S. Karger Publishing, 1992, pp. 74–75.

  95. Seo, J. W., L. M. Mahakian, A. Kheirolomoom, H. Zhang, C. F. Meares, R. Ferdani, C. J. Anderson, and K. W. Ferrara. Liposomal Cu-64 labeling method using bifunctional chelators: poly(ethylene glycol) spacer and chelator effects. Bioconjug. Chem. 21:1206–1215, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Seo, J. W., H. Zhang, D. Kukis, C. Meares, and K. Ferrara. A novel method to label preformed liposomes with Cu-64 for positron emission tomography (PET) imaging. Bioconjug. Chem. 19:2577–2584, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Shokeen, M., and C. J. Anderson. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc. Chem. Res. 42:832–841, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Shokeen, M., A. Zheleznyak, J. M. Wilson, M. Jiang, R. Liu, R. Ferdani, K. S. Lam, J. K. Schwarz, and C. J. Anderson. Molecular imaging of very late antigen-4 (alpha4beta1 integrin) in the premetastatic niche. J. Nucl. Med. 53:779–786, 2012.

    PubMed  Google Scholar 

  99. Smith, S. V. Molecular imaging with copper-64. J. Inorg. Biochem. 98:1874–1901, 2004.

    CAS  PubMed  Google Scholar 

  100. Sugyo, A., A. B. Tsuji, H. Sudo, K. Nagatsu, M. Koizumi, Y. Ukai, G. Kurosawa, M. R. Zhang, Y. Kurosawa, and T. Saga. Evaluation of 89Zr-labeled human anti-CD147 monoclonal antibody as a positron emission tomography probe in a mouse model of pancreatic cancer. PLoS ONE 8:e61230, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Sundstrøm, T., I. Daphu, I. Wendelbo, E. Hodneland, A. Lundervold, H. Immervoll, K. O. Skaftnesmo, M. Babic, P. Jendelova, E. Sykova, M. Lund-Johansen, R. Bjerkvig, and F. Thorsen. Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model. Cancer Res. 73:2445–2456, 2013.

    PubMed  Google Scholar 

  102. Taxt, T., R. Jirík, C. B. Rygh, R. Grüner, M. Bartos, E. Andersen, F. R. Curry, and R. K. Reed. Single-channel blind estimation of arterial input function and tissue impulse response in DCE-MRI. IEEE Trans. Biomed. Eng. 59(4):1012–1021, 2012.

    PubMed  Google Scholar 

  103. Taylor, J. S., and W. E. Reddick. Evolution from empirical dynamic contrast-enhanced magnetic resonance imaging to pharmacokinetic MRI. Adv. Drug Deliv. Rev. 41:91–110, 2000.

    CAS  PubMed  Google Scholar 

  104. Terreno, E., D. D. Castelli, E. Violante, H. M. H. F. Sanders, N. A. J. M. Sommerdijk, and S. Aime. Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry 15:1440–1448, 2009.

    CAS  PubMed  Google Scholar 

  105. Thaxton, C. S., D. G. Georganopoulou, and C. A. Mirkin. Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta 363:120–126, 2006.

    CAS  PubMed  Google Scholar 

  106. Tofts, P. S., G. Brix, D. L. Buckley, J. L. Evelhoch, E. Henderson, M. Knopp, H. B. W. Larsson, T. Y. Lee, N. A. Mayr, G. J. M. Parker, R. E. Port, J. Taylor, and R. M. Weisskoff. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 10:223–232, 1999.

    CAS  PubMed  Google Scholar 

  107. Tofts, P. S., and A. G. Kermode. Measurement of the blood-brain-barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental-concepts. Magn. Reson. Med. 17:357–367, 1991.

    CAS  PubMed  Google Scholar 

  108. Tomasi, G., F. Turkheimer, and E. Aboagye. Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol. Imaging Biol. 14:131–146, 2012.

    PubMed  Google Scholar 

  109. Tousoulis, D., C. Antoniades, N. Koumallos, K. Marinou, E. Stefanadi, G. Latsios, and C. Stefanadis. Novel therapies targeting vascular endothelium. Endothelium 13:411–421, 2006.

    CAS  PubMed  Google Scholar 

  110. Vallabhajosula, S. 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin. Nucl. Med. 37:400–419, 2007.

    PubMed  Google Scholar 

  111. Viglianti, B. L., S. A. Abraham, C. R. Michelich, P. S. Yarmolenko, J. R. MacFall, M. B. Bally, and M. W. Dewhirst. In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn. Reson. Med. 51:1153–1162, 2004.

    CAS  PubMed  Google Scholar 

  112. Vugts, D. J., G. W. Visser, and G. A. van Dongen. 89Zr-PET radiochemistry in the development and application of therapeutic monoclonal antibodies and other biologicals. Curr. Top. Med. Chem. 13:446–457, 2013.

    CAS  PubMed  Google Scholar 

  113. Wadas, T. J., and C. J. Anderson. Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat. Protoc. 1:3062–3068, 2006.

    CAS  PubMed  Google Scholar 

  114. Wadas, T. J., E. H. Wong, G. R. Weisman, and C. J. Anderson. Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr. Pharm. Des. 13:3–16, 2007.

    CAS  PubMed  Google Scholar 

  115. Wall, P. D., W. J. Fry, R. Stephens, D. Tucker, and J. Y. Lettvin. Changes produced in the central nervous system by ultrasound. Science 114:686–687, 1951.

    CAS  PubMed  Google Scholar 

  116. Wang, Y. X. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med. Surg. 1:35–40, 2011.

    PubMed Central  PubMed  Google Scholar 

  117. Wang, Y. F., P. F. Liu, L. H. Qiu, Y. Sun, M. J. Zhu, L. Y. Gu, W. Di, and Y. R. Duan. Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 34:4068–4077, 2013.

    CAS  PubMed  Google Scholar 

  118. Wang, Z. X., and L. N. Ma. Gold nanoparticle probes. Coord. Chem. Rev. 253:1607–1618, 2009.

    CAS  Google Scholar 

  119. Wang, S., I. S. Shin, H. Hancock, B.-S. Jang, H.-S. Kim, S. M. Lee, V. Zderic, V. Frenkel, I. Pastan, C. H. Paik, and M. R. Dreher. Pulsed high intensity focused ultrasound increases penetration and therapeutic efficacy of monoclonal antibodies in murine xenograft tumors. J. Controlled Release 162:218–224, 2012.

    Google Scholar 

  120. Watson, K. D., C. Y. Lai, S. Qin, D. E. Kruse, Y. C. Lin, J. W. Seo, R. D. Cardiff, L. M. Mahakian, J. Beegle, E. S. Inghanm, F. R. Curry, R. K. Reed, and K. W. Ferrara. Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors. Cancer Res. 72:1485–1493, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Weber, W. A. Use of PET for monitoring cancer therapy and for predicting outcome. J. Nucl. Med. 46:983–995, 2005.

    CAS  PubMed  Google Scholar 

  122. Wei, T., J. Liu, H. Ma, Q. Cheng, Y. Huang, J. Zhao, S. Huo, X. Xue, Z. Liang, and X. J. Liang. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13:2528–2534, 2013.

    PubMed  Google Scholar 

  123. Weinmann, H. J., M. Laniado, and W. Mutzel. Pharmacokinetics of GdDTPA dimeglumine after intravenous-injection into healthy-volunteers. Physiol. Chem. Phys. 16:167–172, 1984.

    CAS  Google Scholar 

  124. White, J. B., S. H. Hausner, R. D. Carpenter, and J. L. Sutcliffe. Optimization of the solid-phase synthesis of [18F] radiolabeled peptides for positron emission tomography. Appl. Radiat. Isot. 70:2720–2729, 2012.

    CAS  PubMed  Google Scholar 

  125. Wong, A. W., E. Ormsby, H. Zhang, J. W. Seo, L. M. Mahakian, C. F. Caskey, and K. W. Ferrara. A comparison of image contrast with 64Cu-labeled long circulating liposomes and 18F-FDG in a murine model of mammary carcinoma. Am. J. Nucl. Med. Mol. Imaging 3:32–43, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wood, B. J., R. T. Poon, J. K. Locklin, M. R. Dreher, K. K. Ng, M. Eugeni, G. Seidel, S. Dromi, Z. Neennan, M. Kolf, C. D. V. Black, R. Prabhakar, and S. K. Libutti. Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J. Vasc. Interv. Radiol. 23:248–255, 2012.

    PubMed Central  PubMed  Google Scholar 

  127. Woodle, M. C. 67Gallium-labeled liposomes with prolonged circulation: preparation and potential as nuclear imaging agents. Nucl. Med. Biol. 20:149–155, 1993.

    CAS  PubMed  Google Scholar 

  128. Xiao, Y., H. Hong, A. Javadi, J. W. Engle, W. Xu, Y. Yang, Y. Zhang, T. E. Barnhart, W. Cai, and S. Gong. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 33:3071–3082, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Xu, W., I. A. Siddiqui, M. Nihal, S. Pilla, K. Rosenthal, H. Mukhtar, and S. Gong. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 34:5244–5253, 2013.

    CAS  PubMed  Google Scholar 

  130. http://www.traxtal.com.

  131. Yap, J. T., J. P. J. Carney, N. C. Hall, and D. W. Townsend. Image-guided cancer therapy using PET/CT. Cancer J. 10:221–233, 2004.

    PubMed  Google Scholar 

  132. Yhee, J., S. Kim, H. Koo, S. Son, J. Ryu, I. Youn, K. Choi, I. Kwon, and K. Kim. Optical imaging of cancer-related proteases using near-infrared fluorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes. Theranostics 2:179–189, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Zhang, Y., H. Hong, and W. Cai. PET tracers based on Zirconium-89. Curr. Radiopharm. 4:131–139, 2011.

    PubMed Central  PubMed  Google Scholar 

  134. Zhang, H., J. Kusunose, A. Kheirolomoom, J. W. Seo, J. Qi, K. D. Watson, H. A. Lindfors, E. Ruoslahti, J. L. Sutcliffe, and K. W. Ferrara. Dynamic imaging of arginine-rich heart-targeted vehicles in a mouse model. Biomaterials 29:1976–1988, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Zhang, H., N. Li, P. Sirish, L. Mahakian, E. Ingham, F. R. Curry, S. Yamada, N. Chiamvimonvat, and K. W. Ferrara. The cargo of CRPPR-conjugated liposomes crosses the intact murine cardiac endothelium. J. Controlled Release 163:10–17, 2012.

    CAS  Google Scholar 

  136. Zhang, X. X., Z. Sun, J. Guo, Z. Wang, C. Wu, G. Niu, Y. Ma, D. O. Kiesewetter, and X. Chen. Comparison of F-labeled CXCR4 antagonist peptides for PET imaging of CXCR4 expression. Mol. Imaging Biol. 2013, in press.

Download references

Acknowledgments

The authors acknowledge the support of NIHR01CA134549, NIHR01CA112356, NIHR01CA103828, T32EB003827 and the National Heart Lung and Blood Institute of the NIH as a Program of Excellence in Nanotechnology award (HHSN268201000043C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine W. Ferrara.

Additional information

Associate Editor Gang Bao oversaw the review of this article.

Shengping Qin and Brett Z. Fite contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, S., Fite, B.Z., Gagnon, M.K.J. et al. A Physiological Perspective on the Use of Imaging to Assess the In Vivo Delivery of Therapeutics. Ann Biomed Eng 42, 280–298 (2014). https://doi.org/10.1007/s10439-013-0895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0895-2

Keywords

Navigation