Skip to main content
Log in

Microstructured Extracellular Matrices in Tissue Engineering and Development: An Update

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Microstructured extracellular matrix (ECM), which contains heterogeneous features of the same size scale (5–100 μm) as tissue organoids, has become an important material for the engineering of functional tissues and for the study of tissue-level biology. This review describes methods to generate this class of ECM, and highlights recent advances in the application of microstructured ECM to problems in basic and applied biology. It also discusses computational techniques to analyze and optimize the microstructural patterns for a desired functional output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Affolter, M., S. Bellusci, N. Itoh, B. Shilo, J.-P. Thiery, and Z. Werb. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev. Cell 4:11–18, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Barocas, V. H., A. G. Moon, and R. T. Tranquillo. The fibroblast-populated collagen microsphere assay of cell traction force—part 2: measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. Bellamkonda, R. V. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 27:3515–3518, 2006.

    CAS  PubMed  Google Scholar 

  4. Bettinger, C. J., K. M. Cyr, A. Matsumoto, R. Langer, J. T. Borenstein, and D. L. Kaplan. Silk fibroin microfluidic devices. Adv. Mater. 19:2847–2850, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cabodi, M., N. W. Choi, J. P. Gleghorn, C. S. Lee, L. J. Bonassar, and A. D. Stroock. A microfluidic biomaterial. J. Am. Chem. Soc. 127:13788–13789, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Choi, N. W., M. Cabodi, B. Held, J. P. Gleghorn, L. J. Bonassar, and A. D. Stroock. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6:908–915, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:185–196, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Cui, X., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Du, Y., E. Lo, S. Ali, and A. Khademhosseini. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. U.S.A. 105:9522–9527, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Engelmayr, Jr., G. C., M. Cheng, C. J. Bettinger, J. T. Borenstein, R. Langer, and L. E. Freed. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7:1003–1010, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gjorevski, N., and C. M. Nelson. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr. Biol. 2:424–434, 2010.

    Article  CAS  Google Scholar 

  12. Gjorevski, N., and C. M. Nelson. Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues. Biophys. J. 103:152–162, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Golden, A. P., and J. Tien. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Guo, C.-L., M. Ouyang, J.-Y. Yu, J. Maslov, A. Price, and C.-Y. Shen. Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc. Natl. Acad. Sci. U.S.A. 109:5576–5582, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Guo, L., and J. J. Pribaz. Clinical flap prefabrication. Plast. Reconstr. Surg. 124:340e–350e, 2009.

    Article  Google Scholar 

  16. Hahn, M. S., J. S. Miller, and J. L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18:2679–2684, 2006.

    Article  CAS  Google Scholar 

  17. Hay, E. D. Collagen and other matrix glycoproteins in embryogenesis. In: Cell Biology of Extracellular Matrix, edited by E. D. Hay. New York: Plenum Press, 1991, pp. 419–462.

    Chapter  Google Scholar 

  18. Ilina, O., G.-J. Bakker, A. Vasaturo, R. M. Hofmann, and P. Friedl. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol. 8:015010, 2011.

    Article  PubMed  Google Scholar 

  19. Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103:2480–2487, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kloxin, A. M., A. M. Kasko, C. N. Salinas, and K. S. Anseth. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Koh, W.-G., A. Revzin, and M. V. Pishko. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462, 2002.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, K., N. Gjorevski, E. Boghaert, D. C. Radisky, and C. M. Nelson. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J. 30:2662–2674, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ling, Y., J. Rubin, Y. Deng, C. Huang, U. Demirci, J. M. Karp, and A. Khademhosseini. A cell-laden microfluidic hydrogel. Lab Chip 7:756–762, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Mak, A. F. Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology 23:371–383, 1986.

    CAS  PubMed  Google Scholar 

  25. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D.-H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  CAS  PubMed  Google Scholar 

  27. Nelson, C. M., and M. J. Bissell. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22:287–309, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nelson, C. M., J. L. Inman, and M. J. Bissell. Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat. Protoc. 3:674–678, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nelson, C. M., and J. Tien. Microstructured extracellular matrices in tissue engineering and development. Curr. Opin. Biotechnol. 17:518–523, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Nelson, C. M., M. M. VanDuijn, J. L. Inman, D. A. Fletcher, and M. J. Bissell. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nguyen, D.-H. T., S. C. Stapleton, M. T. Yang, S. S. Cha, C. K. Choi, P. A. Galie, and C. S. Chen. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl. Acad. Sci. U.S.A. 110:6712–6717, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ott, H. C., B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J. P. Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16:927–933, 2010.

    Article  CAS  PubMed  Google Scholar 

  34. Ott, H. C., T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, and D. A. Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14:213–221, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. Pavlovich, A. L., E. Boghaert, and C. M. Nelson. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp. Cell Res. 317:1872–1884, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Petersen, T. H., E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog, and L. E. Niklason. Tissue-engineered lungs for in vivo implantation. Science 329:538–541, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Polacheck, W. J., R. Li, S. G. M. Uzel, and R. D. Kamm. Microfluidic platforms for mechanobiology. Lab Chip 13:2252–2267, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Price, G. M., K. K. Chu, J. G. Truslow, M. D. Tang-Schomer, A. P. Golden, J. Mertz, and J. Tien. Bonding of macromolecular hydrogels using perturbants. J. Am. Chem. Soc. 130:6664–6665, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Price, G. M., K. H. K. Wong, J. G. Truslow, A. D. Leung, C. Acharya, and J. Tien. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31:6182–6189, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Reiffel, A. J., P. W. Henderson, D. D. Krijgh, D. A. Belkin, Y. Zheng, L. J. Bonassar, A. D. Stroock, and J. A. Spector. Mathematical modeling and frequency gradient analysis of cellular and vascular invasion into Integra and Strattice: toward optimal design of tissue regeneration scaffolds. Plast. Reconstr. Surg. 129:89–99, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Schumacher, K. M., S. C. Phua, A. Schumacher, and J. Y. Ying. Controlled formation of biological tubule systems in extracellular matrix gels in vitro. Kidney Int. 73:1187–1192, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Simian, M., Y. Hirai, M. Navre, Z. Werb, A. Lochter, and M. J. Bissell. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128:3117–3131, 2001.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Song, J. J., J. P. Guyette, S. E. Gilpin, G. Gonzalez, J. P. Vacanti, and H. C. Ott. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19:646–651, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sung, J. H., J. Yu, D. Luo, M. L. Shuler, and J. C. March. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11:389–392, 2011.

    Article  CAS  PubMed  Google Scholar 

  45. Tang, M. D., A. P. Golden, and J. Tien. Molding of three-dimensional microstructures of gels. J. Am. Chem. Soc. 125:12988–12989, 2003.

    Article  CAS  PubMed  Google Scholar 

  46. Tang, M. D., A. P. Golden, and J. Tien. Fabrication of collagen gels that contain patterned, micrometer-scale cavities. Adv. Mater. 16:1345–1348, 2004.

    Article  CAS  Google Scholar 

  47. Tien, J., J. G. Truslow, and C. M. Nelson. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells. PLoS ONE 7:e45191, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Truslow, J. G., G. M. Price, and J. Tien. Computational design of drainage systems for vascularized scaffolds. Biomaterials 30:4435–4443, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Truslow, J. G., and J. Tien. Perfusion systems that minimize vascular volume fraction in engineered tissues. Biomicrofluidics 5:022201, 2011.

    Article  PubMed Central  Google Scholar 

  50. Uygun, B. E., A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M. A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M. L. Yarmush, and K. Uygun. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16:814–820, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Vernon, R. B., M. D. Gooden, S. L. Lara, and T. N. Wight. Native fibrillar collagen membranes of micron-scale and submicron thicknesses for cell support and perfusion. Biomaterials 26:1109–1117, 2005.

    Article  CAS  PubMed  Google Scholar 

  52. Vracko, R., and E. P. Benditt. Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J. Cell Biol. 55:406–419, 1972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wang, H. F. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton, NJ: Princeton University Press, 2000, 287 pp.

  54. Wong, K. H. K., J. M. Chan, R. D. Kamm, and J. Tien. Microfluidic models of vascular functions. Annu. Rev. Biomed. Eng. 14:205–230, 2012.

    Article  CAS  PubMed  Google Scholar 

  55. Wong, K. H. K., J. G. Truslow, A. H. Khankhel, K. L. S. Chan, and J. Tien. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J. Biomed. Mater. Res. A 101:2181–2190, 2013.

    Article  PubMed  Google Scholar 

  56. Wong, K. H. K., J. G. Truslow, and J. Tien. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31:4706–4714, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Zheng, Y., J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J. A. López, and A. D. Stroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. U.S.A. 109:9342–9347, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zheng, Y., P. W. Henderson, N. W. Choi, L. J. Bonassar, J. A. Spector, and A. D. Stroock. Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32:5391–5401, 2011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joe Tien or Celeste M. Nelson.

Additional information

Associate Editor Tzung Hsiai oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, J., Nelson, C.M. Microstructured Extracellular Matrices in Tissue Engineering and Development: An Update. Ann Biomed Eng 42, 1413–1423 (2014). https://doi.org/10.1007/s10439-013-0912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0912-5

Keywords

Navigation