Skip to main content
Log in

Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cells and tissues in our body are continuously subjected to mechanical stress. Mechanical stimuli, such as tensile and contractile forces, and shear stress, elicit cellular responses, including gene and protein alterations that determine key behaviors, including proliferation, differentiation, migration, and adhesion. Several tools and techniques have been developed to study these mechanobiological phenomena, including micro-electro-mechanical systems (MEMS). MEMS provide a platform for nano-to-microscale mechanical stimulation of biological samples and quantitative analysis of their biomechanical responses. However, current devices are limited in their capability to perform single cell micromechanical stimulations as well as correlating their structural phenotype by imaging techniques simultaneously. In this study, a biocompatible and optically transparent MEMS for single cell mechanobiological studies is reported. A silicon nitride microfabricated device is designed to perform uniaxial tensile deformation of single cells and tissue. Optical transparency and open architecture of the device allows coupling of the MEMS to structural and biophysical assays, including optical microscopy techniques and atomic force microscopy (AFM). We demonstrate the design, fabrication, testing, biocompatibility and multimodal imaging with optical and AFM techniques, providing a proof-of-concept for a multimodal MEMS. The integrated multimodal system would allow simultaneous controlled mechanical stimulation of single cells and correlate cellular response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Addae-Mensah, K. A., and J. P. Wikswo. Measurement techniques for cellular biomechanics in vitro. Exp. Biol. Med. (Maywood) 233:792–809, 2008.

    Article  CAS  Google Scholar 

  2. Almqvist, N., et al. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86:1753–1762, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Arce, F. T., et al. Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin. Biophys. J. 95:886–894, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Arce, F. T., et al. Heterogeneous elastic response of human lung microvascular endothelial cells to barrier modulating stimuli. Nanomed. Nanotechnol. Biol. Med. 9:875–884, 2013.

    Article  CAS  Google Scholar 

  5. Bashir, R. BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56:1565–1586, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Bashir, R., J. Hilt, O. Elibol, A. Gupta, and N. Peppas. Micromechanical cantilever as an ultrasensitive pH microsensor. Appl. Phys. Lett. 81:3091–3093, 2002.

    Article  CAS  Google Scholar 

  7. Binnig, G., C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56:930, 1986.

    Article  PubMed  Google Scholar 

  8. Chronis, N., and L. P. Lee. Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J. Microelectromech. Syst. 14:857–863, 2005.

    Article  Google Scholar 

  9. Chronis, N., and L. P. Lee. Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on MEMS, IEEE, pp. 17–20, 2004.

  10. Fior, R., S. Maggiolino, M. Lazzarino, and O. Sbaizero. A new transparent Bio-MEMS for uni-axial single cell stretching. Microsyst. Technol. 17:1581–1587, 2011.

    Article  CAS  Google Scholar 

  11. Fior, R., S. Maggiolino, M. Lazzarino, and O. Sbaizero. SPIE MOEMS-MEMS 792906-792906-6. International Society for Optics and Photonics, 2011.

  12. Flynn, A. M., et al. Piezoelectric micromotors for microrobots. J. Microelectromech. Syst. 1:44–51, 1992.

    Article  Google Scholar 

  13. Gosse, C., and V. Croquette. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82:3314–3329, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gupta, A., D. Akin, and R. Bashir. Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J. Vac. Sci. Technol. B 22:2785–2791, 2004.

    Article  CAS  Google Scholar 

  15. Hilt, J. Z., A. K. Gupta, R. Bashir, and N. A. Peppas. Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed. Microdev. 5:177–184, 2003.

    Article  CAS  Google Scholar 

  16. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, S., and D. E. Ingber. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35:564–577, 2003.

    Article  PubMed  Google Scholar 

  19. Jeong, K.-H., and L. P. Lee. A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications. J. Micromech. Microeng. 15:277, 2005.

    Article  Google Scholar 

  20. Johnston, I. D., D. K. McCluskey, C. K. L. Tan, and M. C. Tracey. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:035017, 2014.

    Article  Google Scholar 

  21. Kabir, A., et al. High sensitivity acoustic transducers with thin p+ membranes and gold back-plate. Sens. Actuators A 78:138–142, 1999.

    Article  CAS  Google Scholar 

  22. Kim, D.-H., P. K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11:203–233, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Lal, R., and S. A. John. Biological applications of atomic force microscopy. Am. J. Physiol. Cell Physiol. 266:C1–C21, 1994.

    CAS  Google Scholar 

  24. Luque, T., et al. Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomater. 9:6852–6859, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. MacKay, J. L., and S. Kumar. Cell Imaging Techniques. Berlin: Springer, pp. 313–329, 2013.

    Google Scholar 

  26. Mann, J. M., R. H. W. Lam, S. Weng, Y. Sun, and J. Fu. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12:731–740, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Milanovic, V., S. Kwon, and L. P. Lee. Monolithic vertical combdrive actuators for adaptive optics. Conference Digest. 2002 IEEE/LEOS International Conference on Optical MEMS, IEEE, pp. 57–58, 2002.

  28. Neuman, K. C., and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:491, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Neumann, A., et al. Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro. J. Mater. Sci. Mater. Med. 15:1135–1140, 2004.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen, N.-T., X. Huang, and T. K. Chuan. MEMS-micropumps: a review. J. Fluids Eng. 124:384–392, 2002.

    Article  Google Scholar 

  31. Nguyen, T. D., et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7:587–593, 2012.

    Article  CAS  PubMed  Google Scholar 

  32. Pelham, R. J., and Y.-L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. 94:13661–13665, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pfister, B. J., T. P. Weihs, M. Betenbaugh, and G. Bao. An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31:589–598, 2003.

    Article  PubMed  Google Scholar 

  34. Quist, A., A. Chand, S. Ramachandran, D. Cohen, and R. Lal. Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels. Lab Chip 6:1450–1454, 2006.

    Article  CAS  PubMed  Google Scholar 

  35. Radmacher, M., M. Fritz, C. M. Kacher, J. P. Cleveland, and P. K. Hansma. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70:556–567, 1996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ruder, W. C., et al. Calcium signaling is gated by a mechanical threshold in three-dimensional. Sci. Rep. 2:1–6, 2012.

    Article  Google Scholar 

  37. Scuor, N., et al. Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed. Microdevices 8:239–246, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Shroff, S. G., D. R. Saner, and R. Lal. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am. J. Physiol. Cell Physiol. 269:C286–C292, 1995.

    CAS  Google Scholar 

  39. Sniadecki, N. J., et al. Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. 104:14553–14558, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yang, L., and R. Bashir. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 26:135–150, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, R., T. Boudou, W. G. Wang, C. S. Chen, and D. H. Reich. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Adv. Mater. 25:1699–1705, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Nano3 facilities at Calit2 at UCSD for the valuable support during the microfabrication process, Dr. Stefano Maggiolino at the University of Trieste for brainstorming. The authors also thank members of Nano-bio-imaging and Devices Laboratory at UCSD, especially Brian Meckes and Srinivasan Ramachandran for their input. F.M. acknowledges her advisor, Dr. Farooq Azam, and support from the Gordon and Betty Moore Foundation MMI initiative. This work was supported by NIH Grants R01DA025296 (R.L.) and R01DA024871 (R.L.), and MISE-ICE-CRUI Grant 16-06-2010 Project 99 and FVG Region LR 26/2005 Art. 23 (O.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh Lal.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fior, R., Kwok, J., Malfatti, F. et al. Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Multimodal Imaging of Living Cells. Ann Biomed Eng 43, 1841–1850 (2015). https://doi.org/10.1007/s10439-014-1229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1229-8

Keywords

Navigation