Skip to main content
Log in

A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Six degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks. Input of raw, in vivo, skin-marker-derived motion capture kinematics consistently resulted in specimen failure. The protocol described in this study developed an in-depth methodology to adapt in vivo kinematic recordings into 6-DOF knee motion simulations for drop vertical jumps and sidestep cutting. Our simulation method repeatably produced kinetics consistent with vertical ground reaction patterns while preserving specimen integrity. Athletic task simulation represents an advancement that allows investigators to examine ACL-intact and graft biomechanics during motions that generate greater kinetics, and the athletic tasks are more representative of documented cases of ligament rupture. Establishment of baseline functional mechanics within the knee joint during athletic tasks will serve to advance the prevention, repair and rehabilitation of ACL injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bates, N. A., K. R. Ford, G. D. Myer, and T. E. Hewett. Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. J. Biomech. 46:1237–1241, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bates, N. A., G. D. Myer, J. T. Shearn, and T. E. Hewett. Anterior cruciate ligament biomechanics during robotic and mechanical simulations of physiologic and clinical motion tasks: a systematic review and meta-analysis. Clin. Biomech. 30:1–13, 2015.

    Article  Google Scholar 

  3. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renstrom. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164, 2006.

    Article  PubMed  Google Scholar 

  4. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renstrom. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clin. Orthop. Relat. Res. 454:81–88, 2007.

    Article  PubMed  Google Scholar 

  5. Boden, B. P., G. S. Dean, J. A. Feagin, and W. E. Garrett. Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578, 2000.

    CAS  PubMed  Google Scholar 

  6. Boguszewski, D. V., J. T. Shearn, C. T. Wagner, and D. L. Butler. Investigating the effects of anterior tibial translation on anterior knee force in the porcine model: is the porcine knee ACL dependent? J. Orthop. Res. 29:641–646, 2011.

    Article  PubMed  Google Scholar 

  7. Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122:570–575, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Chandrashekar, N., H. Mansouri, J. Slauterbeck, and J. Hashemi. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J. Biomech. 39:2943–2950, 2006.

    Article  PubMed  Google Scholar 

  9. Darcy, S. P., J. M. Rosvold, J. E. Beveridge, D. T. Corr, J. J. Brown, C. A. Sutherland, L. L. Marchuk, C. B. Frank, and N. G. Shrive. A comparison of passive flexion–extension to normal gait in the ovine stifle joint. J. Biomech. 41:854–860, 2008.

    Article  PubMed  Google Scholar 

  10. DeLeva, P. Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J. Biomech. 29:1223–1230, 1996.

    Article  CAS  Google Scholar 

  11. Diermann, N., T. Schumacher, S. Schanz, M. J. Raschke, W. Petersen, and T. Zantop. Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch. Orthop. Trauma Surg. 129:353–358, 2009.

    Article  PubMed  Google Scholar 

  12. Fleiss, J. L. The Design and Analysis of Clinical Experiments. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. New York: Wiley, pp. xiv, 432, 1986.

  13. Ford, K. R., G. D. Myer, and T. E. Hewett. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 35:1745–1750, 2003.

    Article  PubMed  Google Scholar 

  14. Ford, K. R., G. D. Myer, H. E. Toms, and T. E. Hewett. Gender differences in the kinematics of unanticipated cutting in young athletes. Med. Sci. Sports Exerc. 37:124–129, 2005.

    Article  PubMed  Google Scholar 

  15. Ford, K. R., G. D. Myer, and T. E. Hewett. Reliability of landing 3D motion analysis: implications for longitudinal analyses. Med. Sci. Sports Exerc. 39:2021–2028, 2007.

    Article  PubMed  Google Scholar 

  16. Fujie, H., K. Mabuchi, S. L. Woo, G. A. Livesay, S. Arai, and Y. Tsukamoto. The use of robotics technology to study human joint kinematics: a new methodology. J. Biomech. Eng. 115:211–217, 1993.

    Article  CAS  PubMed  Google Scholar 

  17. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three- dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Article  CAS  PubMed  Google Scholar 

  18. Growney, E., D. Meglan, M. Johnson, T. Cahalan, and K.-N. An. Repeated measures of adult normal walking using a video tracking system. Gait Posture 6:147–162, 1997.

    Article  Google Scholar 

  19. Hashemi, J., N. Chandrashekar, H. Mansouri, J. R. Slauterbeck, and D. M. Hardy. The human anterior cruciate ligament: sex differences in ultrastructure and correlation with biomechanical properties. J. Orthop. Res. 26:945–950, 2008.

    Article  PubMed  Google Scholar 

  20. Herfat, S. T., D. V. Boguszewski, R. J. Nesbitt, and J. T. Shearn. Effect of perturbing a simulated motion on knee and anterior cruciate ligament kinetics. J. Biomech. Eng. 134:104504, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herfat, S. T., D. V. Boguszewski, and J. T. Shearn. Applying simulated in vivo motions to measure human knee and ACL kinetics. Ann. Biomed. Eng. 40:1545–1553, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hewett, T. E., G. D. Myer, K. R. Ford, R. S. Heidt, Jr., A. J. Colosimo, S. G. McLean, A. J. van den Bogert, M. V. Paterno, and P. Succop. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33:492–501, 2005.

    Article  PubMed  Google Scholar 

  23. Howard, R. A., J. M. Rosvold, S. P. Darcy, D. T. Corr, N. G. Shrive, J. E. Tapper, J. L. Ronsky, J. E. Beveridge, L. L. Marchuk, and C. B. Frank. Reproduction of in vivo motion using a parallel robot. J. Biomech. Eng. 129:743–749, 2007.

    Article  PubMed  Google Scholar 

  24. Imhauser, C., C. Mauro, D. Choi, E. Rosenberg, S. Mathew, J. Nguyen, Y. Ma, and T. Wickiewicz. Abnormal tibiofemoral contact stress and its association with altered kinematics after center-center anterior cruciate ligament reconstruction: an in vitro study. Am. J. Sports Med. 41:815–825, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jensen, R. K. Body segment mass, radius and radius of gyration proportions of children. J. Biomech. 19:359–368, 1986.

    Article  CAS  PubMed  Google Scholar 

  26. Kadaba, M. P., H. K. Ramakrishnan, M. E. Wootten, J. Gainey, G. Gorton, and G. V. B. Cochran. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 7:849–860, 1989.

    Article  CAS  PubMed  Google Scholar 

  27. Krosshaug, T., A. Nakamae, B. P. Boden, L. Engebretsen, G. Smith, J. R. Slauterbeck, T. E. Hewett, and R. Bahr. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am. J. Sports Med. 35:359–367, 2007.

    Article  PubMed  Google Scholar 

  28. Leng, H., M. J. Reyes, X. N. Dong, and X. Wang. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone 55:288–291, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miranda, D. L., M. J. Rainbow, J. J. Crisco, and B. C. Fleming. Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver. J. Biomech. 46:567–573, 2013.

    Article  PubMed  Google Scholar 

  30. Nesbitt, R. J., S. T. Herfat, D. V. Boguszewski, A. J. Engel, M. T. Galloway, and J. T. Shearn. Primary and secondary restraints of human and ovine knees for simulated in vivo gait kinematics. J. Biomech. 47:2022–2027, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Powell, J. W., and K. D. Barber-Foss. Sex-related injury patterns among selected high school sports. Am. J. Sports Med. 28:385–391, 2000.

    CAS  PubMed  Google Scholar 

  32. Reinschmidt, C., A. J. van den Bogert, A. Lundberg, B. M. Nigg, N. Murphy, A. Stacoff, and A. Stano. Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6:98–109, 1997.

    Article  Google Scholar 

  33. Reinschmidt, C., A. J. van den Bogert, B. M. Nigg, A. Lundberg, and N. Murphy. Effect of skin movement on the analysis of skeletal knee joint motion during running. J. Biomech. 30:729–732, 1997.

    Article  CAS  PubMed  Google Scholar 

  34. Swirtun, L. R., K. Eriksson, and P. Renstrom. Who chooses anterior cruciate ligament reconstruction and why? A 2-year prospective study. Scand. J. Med. Sci. Sports 16:441–446, 2006.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, X., X. Shen, X. Li, and C. M. Agrawal. Age-related changes in the collagen network and toughness of bone. Bone 31:1–7, 2002.

    Article  PubMed  Google Scholar 

  36. Zantop, T., N. Diermann, T. Schumacher, S. Schanz, F. H. Fu, and W. Petersen. Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am. J. Sports Med. 36:678–685, 2008.

    Article  PubMed  Google Scholar 

  37. Zatziorsky, V., and V. Seluyanov. The mass and inertia characteristics of the main segments of the human body. Biomechanics VIII-B 4:1152–1159, 1983.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health/NIAMS Grants #R01-AR049735, #R01-AR05563, #R01-AR056660 and #R01-AR056259. The authors would also like to acknowledge the support of the staff at the Sports Health and Performance Institute at The Ohio State University and the Sports Medicine Biodynamics Laboratory at Cincinnati Children’s Hospital.

Conflict of interest

There were no conflicts of interest in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Hewett.

Additional information

Associate Editor Cato Laurencin oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bates, N.A., Nesbitt, R.J., Shearn, J.T. et al. A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics. Ann Biomed Eng 43, 2456–2466 (2015). https://doi.org/10.1007/s10439-015-1285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1285-8

Keywords

Navigation