Skip to main content
Log in

Effect of Fluid Viscosity on the Cilia-Generated Flow on a Mouse Tracheal Lumen

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mucous flow in a tracheal lumen is generated by the beat motion of ciliated cells to provide a clearance function by discharging harmful dust particles and viruses. Due to its physiological importance, the cilia-generated flow and the rheological properties of mucus have been investigated intensively. The effects of viscosity on the cilia-generated flow, however, have not been fully clarified. In this study, we measured bulk background velocity of ciliary flow using a micro particle tracking velocimetry method under various viscosity conditions in mice. The results showed that the flow velocity decreased as the increase with viscosity of ambient fluid. Moreover, no previous study has clarified the pump power generated by cilia, which provides important information with regard to understanding the molecular motor properties of cilia. Measurements of both the ciliary flow and the ciliary motion were conducted to determine the cilia pump power. Our results indicated that the cilia pump during the effective stroke did not drive the ciliary flow efficiently under high viscosity conditions; these findings are necessary to resolve the clearance function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Andrade, Y. N., et al. Trpv4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J. Cell. Biol. 168(6):869–874, 2005. doi:10.1083/jcb.200409070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, X., and H. C. Berg. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 78(2):1036–1041, 2000. doi:10.1016/s0006-3495(00)76662-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Darnton, N. C., et al. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189(5):1756–1764, 2007. doi:10.1128/jb.01501-06.

    Article  CAS  PubMed  Google Scholar 

  4. Francis, R. J., et al. Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway. Am. J. Physiol. Lung Cell. Mol. Physiol. 296(6):L1067–L1075, 2009. doi:10.1152/ajplung.00001.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gheber, L., A. Korngreen, and Z. Priel. Effect of viscosity on metachrony in mucus propelling cilia. Cell. Motil. Cytoskeleton. 39(1):9–20, 1998. doi:10.1002/(sici)1097-0169(1998)39:1<9::aid-cm2>3.0.co;2-3.

    Article  CAS  PubMed  Google Scholar 

  6. Herráez-Domínguez, J. V., et al. Rheological characterization of two viscosity grades of methylcellulose: an approach to the modeling of the thixotropic behaviour. Colloid Polym. Sci. 284(1):86–91, 2005. doi:10.1007/s00396-005-1332-3.

    Article  Google Scholar 

  7. Huang, B. K., and M. A. Choma. Microscale imaging of cilia-driven fluid flow. Cell. Mol. Life Sci. 72(6):1095–1113, 2015. doi:10.1007/s00018-014-1784-z.

    Article  CAS  PubMed  Google Scholar 

  8. Hussong, J., et al. Cilia-driven particle and fluid transport over mucus-free mice tracheae. J. Biomech. 46(3):593–598, 2013. doi:10.1016/j.jbiomech.2012.08.020.

    Article  CAS  PubMed  Google Scholar 

  9. Inoue, Y., et al. Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J. Mol. Biol. 376(5):1251–1259, 2008. doi:10.1016/j.jmb.2007.12.023.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, N. T., et al. Autoregulation of beat frequency in respiratory ciliated cells. Demonstration by viscous loading. Am. Rev. Respir. Dis. 144(5):1091–1094, 1991. doi:10.1164/ajrccm/144.5.1091.

    Article  CAS  PubMed  Google Scholar 

  11. Kiyota, K., et al. Fluctuation of cilia-generated flow on the surface of the tracheal lumen. Am. J. Physiol. Lung Cell. Mol. Physiol. 306(2):L144–L151, 2014. doi:10.1152/ajplung.00117.2013.

    Article  CAS  PubMed  Google Scholar 

  12. Kunimoto, K., et al. Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148(1–2):189–200, 2012. doi:10.1016/j.cell.2011.10.052.

    Article  CAS  PubMed  Google Scholar 

  13. Lai, S. K., et al. Micro- and macrorheology of mucus. Adv. Drug. Deliv. Rev. 61(2):86–100, 2009. doi:10.1016/j.addr.2008.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, W. L., et al. Muco-ciliary transport: effect of mucus viscosity, cilia beat frequency and cilia density. Comput. Fluids 49(1):214–221, 2011. doi:10.1016/j.compfluid.2011.05.016.

    Article  Google Scholar 

  15. Matsui, H., et al. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102(6):1125–1131, 1998. doi:10.1172/jci2687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Callaghan, C., K. Sikand, and M. A. Chilvers. Analysis of ependymal ciliary beat pattern and beat frequency using high speed imaging: comparison with the photomultiplier and photodiode methods. Cilia 1(1):8, 2012. doi:10.1186/2046-2530-1-8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ryser, M., et al. Functional imaging of mucociliary phenomena: high-speed digital reflection contrast microscopy. Eur. Biophys. J. 37(1):35–54, 2007. doi:10.1007/s00249-007-0153-3.

    Article  CAS  PubMed  Google Scholar 

  18. Saadatmand, M., et al. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube. J. Biomech. 44(1):170–175, 2011. doi:10.1016/j.jbiomech.2010.09.004.

    Article  PubMed  Google Scholar 

  19. Sanderson, M. J., and M. A. Sleigh. Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J. Cell Sci. 47:331–347, 1981.

    CAS  PubMed  Google Scholar 

  20. Smith, D. J., E. A. Gaffney, and J. R. Blake. A model of tracer transport in airway surface liquid. Bull. Math. Biol. 69(3):817–836, 2007. doi:10.1007/s11538-006-9163-z.

    Article  CAS  PubMed  Google Scholar 

  21. Smith, D. J., E. A. Gaffney, and J. R. Blake. A viscoelastic traction layer model of muco-ciliary transport. Bull. Math. Biol. 69(1):289–327, 2007. doi:10.1007/s11538-005-9036-x.

    Article  CAS  PubMed  Google Scholar 

  22. Smith, D. J., E. A. Gaffney, and J. R. Blake. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid. Bull. Math. Biol. 69(5):1477–1510, 2007. doi:10.1007/s11538-006-9172-y.

    Article  CAS  PubMed  Google Scholar 

  23. Sowa, Y., et al. Torque-speed relationship of the Na+-driven flagellar motor of vibrio alginolyticus. J. Mol. Biol. 327(5):1043–1051, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. Ueno, H., et al. Mouse respiratory cilia with the asymmetric axonemal structure on sparsely distributed ciliary cells can generate overall directional flow. Nanomedicine 8(7):1081–1087, 2012. doi:10.1016/j.nano.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  25. Yi, W. J., et al. Correlation between ciliary beat frequency and metachronal wave disorder using image analysis method. Med. Biol. Eng. Comput. 41(4):481–485, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by JSPS KAKENHI [Grant Numbers 25000008 and 26242039].

Conflict of interest

The authors certify that no conflict of interest is raised by this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kikuchi.

Additional information

Associate Editor Merryn Tawhai oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1994 kb)

Supplementary material 2 (MP4 32655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, K., Haga, T., Numayama-Tsuruta, K. et al. Effect of Fluid Viscosity on the Cilia-Generated Flow on a Mouse Tracheal Lumen. Ann Biomed Eng 45, 1048–1057 (2017). https://doi.org/10.1007/s10439-016-1743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1743-y

Keywords

Navigation