Skip to main content

Advertisement

Log in

White-Tailed Deer as an Ex Vivo Knee Model: Joint Morphometry and ACL Rupture Strength

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Animal joints are valuable proxies for those of humans in biomechanical studies, however commonly used quadruped knees differ greatly from human knees in scale and morphometry. To test the suitability of the cervine stifle joint (deer knee) as a laboratory model, gross morphometry, ACL cross section, and ACL rupture strength were measured and compared to values previously reported for the knees of humans and commonly studied animals. Twelve knee joints from wild white-tailed deer were tested. Several morphometry parameters, including bicondylar width (53.5 ± 3.0 mm) and notch width (14.7 ± 2.5 mm), showed a high degree of similarity to those of the human knee, while both medial (16.7 ± 2.1°) and lateral (17.6 ± 4.7°) tibial slopes were steeper than in humans but less steep than other quadrupeds. The median ACL rupture force (2054 N, 95% CI 2017–2256 N), mean stiffness (260 ± 166 N/mm), mean length (33 ± 7 mm), and mean cross sectional area (44.8 ± 18.3 mm2) were also comparable to previously reported values for human knees. In our limited sample size, no significant sexual dimorphism in strength or morphometry was observed (p ≥ 0.05 for all parameters), though female specimens generally had steeper tibial slopes (lateral: p = 0.52, medial: p = 0.07). Our results suggest that the deer knee may be a suitable model for ex vivo studies of ACL rupture and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baer, G. S., and C. D. Harner. Clinical outcomes of allograft versus autograft in anterior cruciate ligament reconstruction. Clin. Sports Med. 26:661–681, 2007.

    Article  PubMed  Google Scholar 

  2. Brophy, R. H., B. L. Gray, R. M. Nunley, R. L. Barrack, and J. C. Clohisy. Total knee arthroplasty after previous knee surgery: expected interval and the effect on patient age. J. Bone Joint Surg. Am. 96:801–805, 2014.

    Article  PubMed  Google Scholar 

  3. Calvert, N., N. Grainger, and M. Hurworth. Use of bovine carpal joints as a training model for cruciate ligament repair. Anz J. Surg. 83:933–936, 2013.

    Article  PubMed  Google Scholar 

  4. Celarek, A., S. F. Fischerauer, A. M. Weinberg, and E. K. Tschegg. Fracture patterns of the growth plate and surrounding bone in the ovine knee joint at different ages. J. Mech. Behav. Biomed. Mater. 29:286–294, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Chandrashekar, N., H. Mansouri, J. Slauterbeck, and J. Hashemi. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J. Biomech. 39:2943–2950, 2006.

    Article  PubMed  Google Scholar 

  6. Corbiere, N. C., K. A. Lewicki, K. A. Issen, and L. Kuxhaus. Creating physiologically realistic vertebral fractures in a cervine model. J. Biomech. Eng. 136:064504, 2014.

    Article  PubMed  Google Scholar 

  7. Dargel, J., J. W. Michael, J. Feiser, R. Ivo, and J. Koebke. Human knee joint anatomy revisited: morphometry in the light of sex-specific total knee arthroplasty. J. Arthroplast. 26:346–353, 2011.

    Article  Google Scholar 

  8. Eguchi, A., M. Ochi, N. Adachi, M. Deie, A. Nakamae, and M. A. Usman. Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. Knee 21:743–748, 2014.

    Article  PubMed  Google Scholar 

  9. Filho, E. S., M. H. Mendes, S. Claudino, F. Baracho, P. C. Borges, and L. A. da Cunha. Biomechanical analysis on transverse tibial fixation in anterior cruciate ligament reconstructions. Rev. Bras. Ortop. 50:174–179, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fleming, B. C., J. L. Carey, K. P. Spindler, and M. M. Murray. Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An Ex vivo study. J. Orthop. Res. 26:1500–1505, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Halewood, C., M. T. Hirschmann, S. Newman, J. Hleihil, G. Chaimski, and A. A. Amis. The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro. Knee Surg. Sports Traumatol. Arthrosc. 19:559–567, 2011.

    Article  PubMed  Google Scholar 

  12. Hashemi, J., N. Chandrashekar, H. Mansouri, B. Gill, J. R. Slauterbeck, R. C. Schutt, Jr, E. Dabezies, and B. D. Beynnon. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am. J. Sports Med. 38:54–62, 2010.

    Article  PubMed  Google Scholar 

  13. Hedgeland, M., M. Libruk, N. Corbiere, M. Ciani, and L. Kuxhaus. The Odocoileus virginianus femur: mechanical behavior and morphology. PLoS ONE 11:e0146611, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Isaac, D. I., E. G. Meyer, and R. C. Haut. Development of a traumatic anterior cruciate ligament and meniscal rupture model with a pilot in vivo study. J. Biomech. Eng. 132:064501, 2010.

    Article  PubMed  Google Scholar 

  15. Kaplan, E. L., and P. Meier. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457–481, 1958.

    Article  Google Scholar 

  16. Kiapour, A. M., M. R. Shalvoy, M. M. Murray, and B. C. Fleming. Validation of porcine knee as a sex-specific model to study human anterior cruciate ligament disorders. Clin. Orthop. Relat. Res. 473:639–650, 2015.

    Article  PubMed  Google Scholar 

  17. Kieser, D. C., S. Kanade, N. J. Waddell, J. A. Kieser, J. C. Theis, and M. V. Swain. The deer femur–a morphological and biomechanical animal model of the human femur. Biomed. Mater. Eng. 24:1693–1703, 2014.

    PubMed  Google Scholar 

  18. Kumar, N., S. Kukreti, M. Ishaque, D. K. Sengupta, and R. C. Mulholland. Functional anatomy of the deer spine: an appropriate biomechanical model for the human spine? Anat. Rec. 266:108–117, 2002.

    Article  PubMed  Google Scholar 

  19. Li, G., S. E. Park, L. E. DeFrate, M. E. Schutzer, L. Ji, T. J. Gill, and H. E. Rubash. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin. Biomech. (Bristol, Avon) 20:736–744, 2005.

    Article  Google Scholar 

  20. Lingle, S. Escape gaits of white-tailed deer, mule deer, and their hybrids—body configuration, biomechanics, and function. Can. J. Zool. 71:708–724, 1993.

    Article  Google Scholar 

  21. Martin, R. K., D. Gillis, J. Leiter, J. S. Shantz, and P. MacDonald. A Porcine Knee model is valid for use in the evaluation of arthroscopic skills: a pilot study. Clin. Orthop. Relat. Res. 474:965, 2015.

    Article  PubMed Central  Google Scholar 

  22. Martinez-Carranza, N., L. Ryd, K. Hultenby, H. Hedlund, H. Nurmi-Sandh, A. S. Lagerstedt, P. Schupbach, and H. E. Berg. Treatment of full thickness focal cartilage lesions with a metallic resurfacing implant in a sheep animal model, 1 year evaluation. Osteoarthr. Cartil. 24:484, 2015.

    Article  PubMed  Google Scholar 

  23. Osterhoff, G., S. Loffler, H. Steinke, C. Feja, C. Josten, and P. Hepp. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 18:98–103, 2011.

    Article  PubMed  Google Scholar 

  24. Pink, M., J. Perry, P. A. Houglum, and D. J. Devine. Lower extremity range of motion in the recreational sport runner. Am. J. Sports Med. 22:541–549, 1994.

    Article  CAS  PubMed  Google Scholar 

  25. Proffen, B. L., M. McElfresh, B. C. Fleming, and M. M. Murray. A comparative anatomical study of the human knee and six animal species. Knee 19:493–499, 2012.

    Article  PubMed  Google Scholar 

  26. Race, A., and A. A. Amis. Cross-sectional area measurement of soft tissue. A new casting method. J Biomech 29:1207–1212, 1996.

    Article  CAS  PubMed  Google Scholar 

  27. Rowe, P. J., C. M. Myles, C. Walker, and R. Nutton. Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry: how much knee motion is sufficient for normal daily life? Gait Posture 12:143–155, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Salter, R. B., and W. R. Harris. Injuries involving the epiphyseal plate. J. Bone Joint Surg. 45:587–622, 1963.

    Article  Google Scholar 

  29. Saunders, D. A. Adirondack Mammals. State University of New York, College of Environmental Science and Forrestry, 1988.

  30. Smith, H. C., P. Vacek, R. J. Johnson, J. R. Slauterbeck, J. Hashemi, S. Shultz, and B. D. Beynnon. Risk factors for anterior cruciate ligament injury: a review of the literature—part 1: neuromuscular and anatomic risk. Sports Health 4:69–78, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Strickland, S. M., T. W. Belknap, S. A. Turner, T. M. Wright, and J. A. Hannafin. Lack of hormonal influences on mechanical properties of sheep knee ligaments. Am. J. Sports Med. 31:210–215, 2003.

    PubMed  Google Scholar 

  32. Su, S. C., J. G. Skedros, K. N. Bachus, and R. D. Bloebaum. Loading conditions and cortical bone construction of an artiodactyl calcaneus. J. Exp. Biol. 202:3239–3254, 1999.

    CAS  PubMed  Google Scholar 

  33. Tapper, J. E., S. Fukushima, H. Azuma, G. M. Thornton, J. L. Ronsky, N. G. Shrive, and C. B. Frank. Dynamic in vivo kinematics of the intact ovine stifle joint. J. Orthop. Res. 24:782–792, 2006.

    Article  PubMed  Google Scholar 

  34. Throop, A. D., A. K. Landauer, A. M. Clark, and L. Kuxhaus. Cervine tibia morphology and mechanical strength: a suitable tibia model? J. Biomech. Eng. 137:034503, 2015.

    Article  Google Scholar 

  35. Williams, 3rd, R. J., T. L. Wickiewicz, and R. F. Warren. Management of unicompartmental arthritis in the anterior cruciate ligament-deficient knee. Am. J. Sports Med. 28:749–760, 2000.

    Article  PubMed  Google Scholar 

  36. Yang, S. Y., H. Yu, W. Gong, B. Wu, L. Mayton, R. Costello, and P. H. Wooley. Murine model of prosthesis failure for the long-term study of aseptic loosening. J. Orthop. Res. 25:603–611, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Department of Mechanical & Aeronautical Engineering at Clarkson University. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Michalek.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaino, N.L., Hedgeland, M.J., Ciani, M.J. et al. White-Tailed Deer as an Ex Vivo Knee Model: Joint Morphometry and ACL Rupture Strength. Ann Biomed Eng 45, 1093–1100 (2017). https://doi.org/10.1007/s10439-016-1746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1746-8

Keywords

Navigation