Skip to main content

Advertisement

Log in

Assessment of Corneal Biomechanical Properties with Inflation Test Using Optical Coherence Tomography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomechanical properties are important for the cornea to maintain its normal shape and function. There is still a need to develop better methods for accurate measurement of corneal mechanical properties. In this study, we propose to introduce the optical coherence tomography (OCT) in inflation test for the imaging of corneal deformation in order to measure its biomechanical properties. Ten cornea-mimicking silicone phantoms with different stiffness and five fresh porcine corneas were tested using the proposed method. Intra-ocular pressure was changed from 10 to 90 mmHg using two different loading rates to observe the pressure-apex displacement relationship and calculate the apparent stiffness of the corneas. Stiffness of the corneal phantoms obtained by the inflation test ranged from 0.2 to 1 MPa, which was highly consistent with the results from the mechanical tensile test (y = 0.70x, p < 0.001). The porcine corneas showed highly viscoelastic behavior with obvious hysteresis in inflation. The apparent stiffness of the porcine corneas was 0.63 ± 0.07 and 1.05 ± 0.08 MPa with loading rates of 3.3 and 33 mmHg/min, respectively. Mapping of corneal surface displacement was also generated for both the phantom and porcine corneas. This study showed that it is feasible to incorporate the high resolution OCT imaging in inflation test to measure the biomechanical properties of the cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, K., A. El-Sheikh, and T. Newson. Application of structural analysis to the mechanical behaviour of the cornea. J. R. Soc. Interface 1:3–15, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreassen, T. T., A. H. Simonsen, and H. Oxlund. Biomechanical properties of keratoconus and normal corneas. Exp. Eye Res. 31:435–441, 1980.

    Article  CAS  PubMed  Google Scholar 

  3. Boschetti, F., V. Triacca, L. Spinelli, and A. Pandolfi. Mechanical characterization of porcine corneas. J. Biomech. Eng.-Trans. ASME 134:031003, 2012.

    Article  CAS  Google Scholar 

  4. Boyce, B. L., J. M. Grazier, R. E. Jones, and T. D. Nguyen. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29:3896–3904, 2008.

    Article  CAS  PubMed  Google Scholar 

  5. Chao, C. Y., G. Y. Ng, K. K. Cheung, Y. P. Zheng, L. K. Wang, and G. L. Cheing. In vivo and ex vivo approaches to studying the biomechanical properties of healing wounds in rat skin. J. Biomech. Eng.-Trans. ASME 135:101009, 2013.

    Article  Google Scholar 

  6. Dorronsoro, C., D. Pascual, P. Pérez-Merino, S. Kling, and S. Marcos. Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas. Biomed. Opt. Express 3:473–487, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dubbelman, M., H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol. Scand. 80:379–383, 2002.

    Article  PubMed  Google Scholar 

  8. Dupps, W. J., and S. E. Wilson. Biomechanics and wound healing in the cornea. Exp. Eye Res. 83:709–720, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elsheikh, A., D. Alhasso, and P. Rama. Biomechanical properties of human and porcine corneas. Exp. Eye Res. 86:783–790, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Elsheikh, A., B. Geraghty, P. Rama, M. Campanelli, and K. M. Meek. Characterization of age-related variation in corneal biomechanical properties. J. R. Soc. Interface 7:1475–1485, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Elsheikh, A., D. F. Wang, M. Brown, P. Rama, M. Campanelli, and D. Pye. Assessment of corneal biomechanical properties and their variation with age. Curr. Eye Res. 32:11–19, 2007.

    Article  PubMed  Google Scholar 

  12. Elsheikh, A., D. F. Wang, and D. Pye. Determination of the modulus of elasticity of the human cornea. J. Refract. Surg. 23:808–818, 2007.

    PubMed  Google Scholar 

  13. Ford, M., W. J. Dupps, N. Huprikar, R. Lin, and A. M. Rollins. OCT corneal elastography by pressure-induced optical feature flow. In: Ophthalmic Technologies XVI, edited by F. Manns, P. G. Soderberg and A. Ho. Bellingham: SPIE-Int Soc Optical Engineering, 2006, pp. 1380.

  14. Ford, M. R., W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. L. Hu. Method for optical coherence elastography of the cornea. J. Biomed. Opt. 16:016005, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gatzioufas, Z., and B. Seitz. Determination of corneal biomechanical properties in vivo: a review. Mater. Sci. Technol. 31:188–196, 2015.

    Article  CAS  Google Scholar 

  16. Grulkowski, I., M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski. Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Opt. Express 17:4842–4858, 2009.

    Article  CAS  PubMed  Google Scholar 

  17. Hall, T. J., M. Bilgen, M. F. Insana, and T. A. Krouskop. Phantom materials for elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44:1355–1365, 1997.

    Article  Google Scholar 

  18. Hjortdal, J. Ø. Regional elastic performance of the human cornea. J. Biomech. 29:931–942, 1996.

    Article  CAS  PubMed  Google Scholar 

  19. Hon, Y., and A. K. C. Lam. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom. Vis. Sci. 90:E1–E8, 2013.

    Article  PubMed  Google Scholar 

  20. Huang, D., Y. Li, and S. Radhakrishnan. Optical coherence tomography of the anterior segment of the eye. Ophthalmol. Clin. North Am. 17:1–6, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, Y. P., S. Z. Wang, S. Saarakkala, and Y. P. Zheng. Quantification of stiffness change in degenerated articular cartilage using optical coherence tomography-based air-jet indentation. Connect. Tissue Res. 52:433–443, 2011.

    Article  PubMed  Google Scholar 

  22. Huang, Y. P., Y. P. Zheng, S. Z. Wang, Z. P. Chen, Q. H. Huang, and Y. H. He. An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues. Meas. Sci. Technol. 20:015805, 2009.

    Article  Google Scholar 

  23. Kling, S., and S. Marcos. Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests. J. Refract. Surg. 29:490–497, 2013.

    Article  PubMed  Google Scholar 

  24. Kling, S., L. Remon, A. Perez-Escudero, J. Merayo-Lloves, and S. Marcos. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest. Ophthalmol. Vis. Sci. 51:3961–3968, 2010.

    Article  PubMed  Google Scholar 

  25. Kotecha, A. What biomechanical properties of the cornea are relevant for the clinician? Surv. Ophthalmol. 52:S109–S114, 2007.

    Article  PubMed  Google Scholar 

  26. Kovesi, P. Symmetry and asymmetry from local phase. In: Tenth Australian Joint Conference on Artificial Intelligence, pp. 185–190, 1997.

  27. Li, T., L. Tian, L. Wang, Y. Hon, A. K. Lam, Y. Huang, Y. Wang, and Y. Zheng. Correction on the distortion of Scheimpflug imaging for dynamic central corneal thickness. J. Biomed. Opt. 20:56006, 2015.

    Article  PubMed  Google Scholar 

  28. Lu, M. H., Y. P. Zheng, and Q. H. Huang. A novel method to obtain modulus image of soft tissues using ultrasound water jet indentation: a phantom study. IEEE Trans. Biomed. Eng. 54:114–121, 2007.

    Article  PubMed  Google Scholar 

  29. Luce, D. A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract. Refract. Surg. 31:156–162, 2005.

    Article  PubMed  Google Scholar 

  30. Nguyen, T. M., B. Arnal, S. Z. Song, Z. H. Huang, R. K. Wang, and M. O’Donnell. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography. J. Biomed. Opt. 20:016001, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, T. D., and B. L. Boyce. An inverse finite element method for determining the anisotropic properties of the cornea. Biomech. Model. Mechanobiol. 10:323–337, 2011.

    Article  CAS  PubMed  Google Scholar 

  32. Osman, I. M., H. A. Helaly, M. Abdalla, and M. Abou. Shousha. Corneal biomechanical changes in eyes with small incision lenticule extraction and laser assisted in situ keratomileusis. BMC Ophthalmol. 16:123, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pai, S., and W. R. Ledoux. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue. J. Biomech. 43:1754–1760, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pérez-Escudero, A., C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos. Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface. Invest. Ophthalmol. Vis. Sci. 50:4146–4154, 2009.

    Article  PubMed  Google Scholar 

  35. Ramos, J. L. B., Y. Li, and D. Huang. Clinical and research applications of anterior segment optical coherence tomography: a review. Clin. Exp. Ophthalmol. 37:81–89, 2009.

    Article  PubMed  Google Scholar 

  36. Rosales, P., and S. Marcos. Pentacam Scheimpflug quantative imaging of the crystalline lens and intraocular lens. J. Refract. Surg. 25:421–428, 2008.

    Article  Google Scholar 

  37. Roy, A. S., and W. J. Dupps. Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior: a whole-eye finite element analysis. J. Refract. Surg. 25:875–887, 2009.

    Article  Google Scholar 

  38. Tanter, M., D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans. Med. Imaging 28:1881–1893, 2009.

    Article  CAS  PubMed  Google Scholar 

  39. Tian, L., Y. F. Huang, L. Q. Wang, H. Bai, Q. Wang, J. J. Jiang, Y. Wu, and M. Gao. Corneal biomechanical assessment using corneal visualization Scheimpflug technology in keratoconic and normal eyes. J. Ophthalmol. 2014:147516, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, L. K., Y. P. Huang, L. Tian, C. S. Kee, and Y. P. Zheng. Measurement of corneal tangent modulus using ultrasound indentation. Ultrasonics 71:20–28, 2016.

    Article  PubMed  Google Scholar 

  41. Wollensak, G., E. Spoerl, and T. Seiler. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. J. Cataract. Refract. Surg. 29:1780–1785, 2003.

    Article  PubMed  Google Scholar 

  42. Yu, J. G., F. J. Bao, Y. F. Feng, C. Whitford, T. Ye, Y. B. Huang, Q. M. Wang, and A. Elsheikh. Assessment of corneal biomechanical behavior under posterior and anterior pressure. J. Refract. Surg. 29:64–70, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by grants from the National Natural Science Foundation of China (31600758), Beijing Natural Science Foundation (7174287), Beijing Nova Program (xx2018076) and Beijing Municipal Administration of Hospitals’ Youth Programme (QMS20170204). The authors would like to thank Ms. Sally Ding for editing the manuscript. No conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanping Huang or Yongping Zheng.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tian, L., Huang, Y. et al. Assessment of Corneal Biomechanical Properties with Inflation Test Using Optical Coherence Tomography. Ann Biomed Eng 46, 247–256 (2018). https://doi.org/10.1007/s10439-017-1973-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1973-7

Keywords

Navigation