Skip to main content
Log in

In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Plantar heel pain is one of the most common musculoskeletal disorders and generally causing long term discomfort of the patients. The objective of the present study is to combine in vivo experimental measurements and finite element modelling of the foot to investigate the influences of stiffness and thickness variation of individual plantar tissues especially the heel pad on deformation behaviours of the human foot. The stiffness and thickness variance of individuals were measured through supersonic shear wave elastography considering detailed heel pad layers refered to in literature as: dermis, stiffer micro-chamber layer, softer macro-chamber layer. A corresponding foot model with separated heel pad layers was established and used to a sensitivity analysis related to the variance of above-mentioned tissue characteristics. The experimental results show that the average stiffness of the micro-chamber layer ranged from 24.7 (SD 2.4) kPa to 18.8 (SD 3.5) kPa with the age group increasing from 20–29 years old to 60–69 years old, while the average macro-chamber stiffness is 10.6 (SD 1.5) kPa that appears to slightly decrease with the increasing age. Both plantar soft tissue stiffness and thickness of male were generally larger than that of female. The numerical simulation results show that the variance of heel pad strain level can reach 27.5% due to the effects of stiffness and thickness change of the plantar tissues. Their influences on the calcaneus stress and plantar pressure were also significant. This indicates that the most appreciate way to establish a personalized foot model needs to consider the difference of both individual foot anatomic geometry and plantar soft tissue material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ahanchian, N., C. J. Nester, D. Howard, L. Ren, and D. Parker. Estimating the material properties of heel pad sub-layers using inverse finite element analysis. Med. Eng. Phys. 40:11, 2016.

    Article  PubMed  Google Scholar 

  2. Bandholm, T., L. Boysen, S. Haugaard, M. K. Zebis, and J. Bencke. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. J. Foot Ankle Surg. 47(2):89–95, 2008.

    Article  PubMed  Google Scholar 

  3. Bercoff, J., A. Criton, C. C. Bacrie, J. Souquet, M. Tanter, J. L. Gennisson, T. Deffieux, M. Fink, V. Juhan, and A. Colavolpe. ShearWave™ Elastography A new real time imaging mode for assessing quantitatively soft tissue viscoelasticity. Ultrasonics Symposium 2009

  4. Birtane, M., and H. Tuna. The evaluation of plantar pressure distribution in obese and non-obese adults. Clin. Biomech. 19(10):1055–1059, 2004.

    Article  Google Scholar 

  5. Bucki, M., V. Luboz, A. Perrier, E. Champion, B. Diot, N. Vuillerme, and Y. Payan. Clinical workflow for personalized foot pressure ulcer prevention. Med. Eng. Phys. 38(9):S135045331630073X, 2016.

    Article  Google Scholar 

  6. Bus, S. A. Ground reaction forces and kinematics in distance running in older-aged men. Med. Sci. Sports Exerc. 35(7):1167–1175, 2003.

    Article  PubMed  Google Scholar 

  7. Buschmann, W. R., M. H. Jahss, F. Kummer, P. Desai, R. O. Gee, and J. L. Ricci. Histology and histomorphometric analysis of the normal and atrophic heel fat pad. Foot Ankle Int. 16(5):254–258, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Campanelli, V., F. Massimiliano, F. Niccolò, C. Alessio, P. Antonio, and S. Andrea. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study. J. Anat. 219(5):622–631, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cavanagh, P. R. Plantar soft tissue thickness during ground contact in walking. J. Biomech. 32(6):623–628, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Cavanagh, P. R., E. Morag, A. J. Boulton, M. J. Young, K. T. Deffner, and S. E. Pammer. The relationship of static foot structure to dynamic foot function. J. Biomech. 30:243–250, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Cavanagh, P. R., M. M. Rodgers, and A. Iiboshi. Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle 7(5):262–276, 1987.

    Article  CAS  PubMed  Google Scholar 

  12. Chatzistergos, P. E., R. Naemi, and N. Chockalingam. A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear. Med. Eng. Phys. 37(6):531–538, 2015.

    Article  PubMed  Google Scholar 

  13. Chen, W. M., and P. V. S. Lee. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads. Comput Method Biomech. 18(14):1582–1595, 2015.

    Article  Google Scholar 

  14. Cheung, T. M., M. Zhang, and K. N. An. Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin. Biomech. 21(2):194–203, 2006.

    Article  Google Scholar 

  15. Cheung, J. T., M. Zhang, A. K. Leung, and Y. B. Fan. Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J. Biomech. 38(5):1045–1054, 2005.

    Article  PubMed  Google Scholar 

  16. Chih-Chin, H., T. Wen-Chung, W. Chung-Li, P. Sun-Hua, S. Yio-Wha, and C. Yu-Shuan. Microchambers and macrochambers in heel pads: are they functionally different? J. Appl. Physiol. 102(6):2227–2231, 2007.

    Article  Google Scholar 

  17. Cotchett, M. P., G. Whittaker, and B. Erbas. Psychological variables associated with foot function and foot pain in patients with plantar heel pain. Clin. Rheumatol. 34(5):957–964, 2015.

    Article  PubMed  Google Scholar 

  18. Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39(7):1279–1286, 2006.

    Article  PubMed  Google Scholar 

  19. Gangming, L., V. L. Houston, G. M. Anne, A. C. Beattie, and T. Chaiya. Finite element analysis of heel pad with insoles. J. Biomech. 44(8):1559–1565, 2011.

    Article  Google Scholar 

  20. Gefen, A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med. Eng. Phys. 25(6):491–499, 2003.

    Article  PubMed  Google Scholar 

  21. Genevieve, S., H. B. Menz, and N. Lesley. Age-related differences in foot structure and function. Gait Posture 26(1):0–75, 2007.

    Google Scholar 

  22. Grigoriadis, G., N. Newell, D. Carpanen, A. Christou, A. M. J. Bull, and S. D. Masouros. Material properties of the heel fat pad across strain rates. J. Mech. Behav. Biomed. Mater. 65:398–407, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hsu, C. C., C. P. Chen, S. C. Lin, W. C. Tsai, H. T. Liu, Y. C. Lin, H. J. Lee, and W. P. Chen. Determination of the augmentation effects of hyaluronic acid on different heel structures in amputated lower limbs of diabetic patients using ultrasound elastography. Ultrasound Med. Biol. 38(6):943–952, 2012.

    Article  PubMed  Google Scholar 

  24. Hsu, C. C., W. C. Tsai, P. C. Chen, Y. W. Shau, C. L. Wang, J. L. Chen, and K. J. Chang. Effects of aging on the plantar soft tissue properties under the metatarsal heads at different impact velocities. Ultrasound Med. Biol. 31(10):1423–1429, 2005.

    Article  PubMed  Google Scholar 

  25. Hsu, C. C., W. C. Tsai, T. Y. Hsiao, F. Y. Tseng, Y. W. Shau, C. L. Wang, and S. C. Lin. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin. Biomech. 24(8):682–686, 2009.

    Article  Google Scholar 

  26. Jacob, S., and M. K. Patil. Stress analysis in three-dimensional foot models of normal and diabetic neuropathy. Front. Med. Biol. Eng. 9(3):211–227, 1999.

    CAS  PubMed  Google Scholar 

  27. Jahss, M. H., J. D. Michelson, P. Desai, R. Kaye, F. Kummer, W. Buschman, F. Watkins, and S. Reich. Investigations into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle 13(5):233–242, 1992.

    Article  CAS  PubMed  Google Scholar 

  28. Jérémy, B., T. Mickael, and F. Mathias. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE T. Ultrason. FERR. 51(4):396–409, 2004.

    Article  Google Scholar 

  29. Kwan, L. C., Y. P. Zheng, and L. Y. Cheing. The effect of aging on the biomechanical properties of plantar soft tissues. Clin. Biomech. 25(6):601–605, 2010.

    Article  Google Scholar 

  30. Lin, C. Y., C. C. Lin, Y. C. Chou, P. Y. Chen, and C. L. Wang. Heel pad stiffness in plantar heel pain by shear wave elastography. Ultrasound Med. Biol. 41(11):2890–2898, 2015.

    Article  PubMed  Google Scholar 

  31. Linder-Ganz, E., N. Shabshin, Y. Itzchak, Z. Yizhar, I. Siev-Ner, and A. Gefen. Strains and stresses in sub-dermal tissues of the buttocks are greater in paraplegics than in healthy during sitting. J. Biomech. 41(3):567–580, 2008.

    Article  PubMed  Google Scholar 

  32. Luboz, V., A. Perrier, M. Bucki, B. Diot, F. Cannard, N. Vuillerme, and Y. Payan. Influence of the calcaneus shape on the risk of posterior heel ulcer using 3D patient-specific biomechanical modeling. Ann. Biomed. Eng. 43(2):1–11, 2014.

    Google Scholar 

  33. McPoil, T. G., R. L. Martin, M. W. Cornwall, D. K. Wukich, J. J. Irrgang, and J. J. Godges. Heel pain—plantar fasciitis: clinical practice guildelines linked to the international classification of function, disability, and health from the orthopaedic section of the American Physical Therapy Association. J. Orthop. Sports Phys. Ther. 85A:872–877, 2008.

    Google Scholar 

  34. MillerYoung, J. E., N. A. Duncan, and G. Baroud. Material properties of the human calcaneal fat pad in compression: experiment and theory. J. Biomech. 35(12):1523–1531, 2002.

    Article  Google Scholar 

  35. Mo, F., F. Li, M. Behr, Z. Xiao, G. J. Zhang, and X. P. Du. A lower limb-pelvis finite element model with 3D active muscles. Ann. Biomed. Eng. 46(1):86–96, 2018.

    Article  PubMed  Google Scholar 

  36. Nakamura, S., and R. D. Crowninshield. An analysis of soft tissue loading in the foot. J. Biomech. 14(7):492, 1981.

    Google Scholar 

  37. Prichasuk, S. The heel pad in plantar heel pain. J. Bone Jt. Surg. Br. 76(1):140, 1994.

    Article  CAS  Google Scholar 

  38. Riddle, D. L., M. Pulisic, P. Pidcoe, and R. E. Johnson. Risk factors for plantar fasciitis: a matched case–control study. J. Bone Joint Surg. Am. 85A:872–877, 2003.

    Article  Google Scholar 

  39. Rome, K. Mechanical properties of the heel pad: current theory and review of the literature. Foot. 8(4):179–185, 1998.

    Article  Google Scholar 

  40. Siegler, S., J. Block, and C. D. Schneck. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle. 8(5):234, 1988.

    Article  CAS  PubMed  Google Scholar 

  41. Snehal, C., J. P. Halloran, A. J. V. D. Bogert, and E. Ahmet. A three-dimensional inverse finite element analysis of the heel pad. J. Biomech. Eng. 134(3):031002, 2012.

    Article  Google Scholar 

  42. Tsai, W. C., C. L. Wang, T. C. Hsu, F. J. Hsieh, and F. T. Tang. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome. Foot Ankle Int. 20(10):663–668, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, C. L., C. Y. Lin, P. Y. Chen, Y. W. Shau, and H. C. Tai. Spatial-dependent mechanical properties of the heel pad by shear wave elastography. Ultrasound Med. Biol. 43:S89–S90, 2017.

    Article  Google Scholar 

  44. Williams, D. S., and I. S. McClay. Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys. Ther. 80(9):864–871, 2000.

    Article  CAS  PubMed  Google Scholar 

  45. Wong, D. W., W. Niu, Y. Wang, and M. Zhang. Finite element analysis of foot and ankle impact injury: risk evaluation of calcaneus and talus fracture. PLoS ONE 11(4):e0154435, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wren, T. A. L., S. A. Yerby, G. S. Beaupré, and D. R. Carter. Mechanical properties of the human achilles tendon. Clin. Biomech. 16(3):245–251, 2001.

    Article  CAS  Google Scholar 

  47. Wright, D. G., and D. C. Rennels. A study of elastic properties of plantar fascia. J. Bone Jt. Surg. Am. Vol. 46(1–4):482, 1964.

    Article  CAS  Google Scholar 

  48. Wu, C. H., C. Y. Lin, M. Y. Hsiao, Y. H. Cheng, W. S. Chen, and T. G. Wang. Altered stiffness of microchamber and macrochamber layers in the aged heel pad: Shear wave ultrasound elastography evaluation. J. Formos. Med. Assoc. 117(5):S0929664617301511, 2017.

    Google Scholar 

  49. Yak-Nam, W., L. Kara, and W. R. Ledoux. Histomorphological evaluation of diabetic and non-diabetic plantar soft tissue. Foot Ankle Int. 32(08):802–810, 2011.

    Article  Google Scholar 

  50. Zhang, M., and A. F. Mak. In vivo friction properties of human skin. Prosthet. Orthot. Int. 23(2):135, 1999.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant Nos. 51875187, 51621004), and Hunan Province Science and Technology Plan (Grant No. 2019JJ40021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zurong Yang.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 6, 7, and 8 and Figs. 10 and 11.

Table 7 Summary of plantar pressures and contact areas of healthy individuals in quiet static standing and their comparison with FE predicted results.
Table 8 Summary of inversed and SWE measured material properties for heel pad.
Figure 10
figure 10

Age effects on stiffness and thickness of plantar tissues.

Figure 11
figure 11

Typical effects of BMI values on stiffnesses and thicknesses of the entire heel pad (a) Relationship between the stiffness and BMI, (b) Relationship between the thickness and BMI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, F., Li, J., Yang, Z. et al. In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling. Ann Biomed Eng 47, 2356–2371 (2019). https://doi.org/10.1007/s10439-019-02314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02314-0

Keywords

Navigation