Skip to main content
Log in

Effects of Nanoparticle Properties on Kartogenin Delivery and Interactions with Mesenchymal Stem Cells

  • S.I. : Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Clinical trials with mesenchymal stem cells (MSCs) have demonstrated potential to treat osteoarthritis, a debilitating disease that affects millions. However, these therapies are often less effective due to heterogeneous MSC differentiation. Kartogenin (KGN), a synthetic small molecule that induces chondrogenesis, has recently been explored to decrease this heterogeneity. KGN has been encapsulated in nanoparticles due to its hydrophobicity. To explore the effect of nanoparticle properties on KGN and MSC interactions, here we fabricated three nanoparticle formulations that vary in hydrophobicity, size, and surface charge using nanoprecipitation: KGN-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (hydrophobic surface, negative charge, ~ 167 nm), PLGA–poly(ethylene glycol) (PEG) nanoparticles (hydrophilic surface, positive charge, ~ 297 nm), and PLGA–PEG–hyaluronic acid (HA) nanoparticles (hydrophilic surface, negative charge, ~ 507 nm). We observed differences in KGN loading, release, and suspension stability, with the PLGA particles exhibiting ~ 50% drug loading and PLGA–PEG–HA particles releasing the most KGN. All nanoparticles were found to interact with MSCs with evidence of increased uptake in PLGA–PEG and PLGA–PEG–HA compared with surface association of PLGA particles. Over short times (~ 7 days), MSCs incubated with all KGN-loaded formulations exhibited a similar increase in sulfated glycosaminoglycans, characteristic of chondrogenic differentiation, compared with non-KGN loaded formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

OA:

Osteoarthritis

ECM:

Extracellular matrix

MSCs:

Mesenchymal stem cells

hMSCs:

Human mesenchymal stem cells

KGN:

Kartogenin

CBFβ:

Core-binding factor subunit β

RUNX:

Runt-related transcription factor

TGF-β1:

Transforming growth factor beta 1

EC50 :

Half maximal effective concentration

MW:

Molecular weight

PLGA:

Poly(lactic-co-glycolic acid)

PLGA–PEG:

PLGA–poly(ethylene glycol)

PLGA–PEG–HA:

PLGA–PEG–hyaluronic acid

GAG:

Glycosoaminoglycan

sGAG:

Sulfated glycosaminoglycan

PEG-bis-NH2 :

PEG-bis-amine

PVA:

Poly(vinyl alcohol)

Sulfo-NHS:

N-hydroxysulfosuccinimide

DCC:

N,N′-dicyclohexylcarbodiimide

EDC:

N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride

DCM:

Dichloromethane

ACN:

Acetonitrile

MES:

2-(N-morpholino)ethanesulfonic acid

FITC:

Fluorescein isothiocyanate

CTAB:

Hexadecyltrimethylammonium bromide

PBS:

Phosphate buffered saline

DMSO:

Dimethyl sulfoxide

EDTA:

Ethylenediaminetetraacetic acid disodium salt

HCl:

Hydrochloric acid

TFA:

Trifluoroacetic acid

CCK-8:

Cell Counting Kit-8

DMEM:

Dulbecco’s modified Eagle’s medium

ITS+:

Insulin/transferrin/selenium

HPLC:

High performance liquid chromatography

N2 :

Nitrogen

RT:

Room temperature

1H-NMR:

Proton nuclear magnetic resonance

DLS:

Dynamic light scattering

PDI:

Polydispersity index

TEM:

Transmission electron microscopy

EE%:

Encapsulation efficiency

DL:

Drug loading

ANOVA:

Analysis of variance

References

  1. Barry, F., and M. Murphy. Mesenchymal stem cells in joint disease and repair. Nat. Rev. Rheumatol. 9:584, 2013.

    Article  CAS  Google Scholar 

  2. Danhier, F., E. Ansorena, J. M. Silva, R. Coco, A. Le Breton, and V. Préat. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release 161:505–522, 2012.

    Article  CAS  Google Scholar 

  3. Decker, R. S., E. Koyama, M. Enomoto-Iwamoto, P. Maye, D. Rowe, S. Zhu, P. G. Schultz, and M. Pacifici. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev. Biol. 395:255–267, 2014.

    Article  CAS  Google Scholar 

  4. Fakhari, A., and C. Berkland. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 9:7081–7092, 2013.

    Article  CAS  Google Scholar 

  5. Fan, W., J. Li, L. Yuan, J. Chen, Z. Wang, Y. Wang, C. Guo, X. Mo, and Z. Yan. Intra-articular injection of Kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug Deliv. 25:1004–1012, 2018.

    Article  CAS  Google Scholar 

  6. Freitag, J., D. Bates, R. Boyd, K. Shah, A. Barnard, L. Huguenin, and A. Tenen. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy—a review. BMC Musculoskelet. Disord. 17:230, 2016.

    Article  Google Scholar 

  7. Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7:5577–5591, 2012.

    Article  Google Scholar 

  8. Gumustas, M., C. T. Sengel-Turk, A. Gumustas, S. A. Ozkan, and B. Uslu. Chapter 5: Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, edited by A. M. Grumezescu. Amsterdam: Elsevier, 2017, pp. 67–108.

    Chapter  Google Scholar 

  9. Herrera, M. B., B. Bussolati, S. Bruno, L. Morando, G. S. Mauriello-Romanazzi, I. Stamenkovic, L. Biancone, and G. Camussi. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int. 72:430–441, 2007.

    Article  CAS  Google Scholar 

  10. Horkay, F., P. J. Basser, D. J. Londono, A.-M. Hecht, and E. Geissler. Ions in hyaluronic acid solutions. J. Chem. Phys. 131:184902, 2009.

    Article  Google Scholar 

  11. Hsu, H. J., S. Sen, R. M. Pearson, S. Uddin, P. Král, and S. Hong. Poly(ethylene glycol) corona chain length controls end-group-dependent cell interactions of dendron micelles. Macromolecules 47:6911–6918, 2014.

    Article  CAS  Google Scholar 

  12. Hu, Q., B. Ding, X. Yan, L. Peng, J. Duan, S. Yang, L. Cheng, and D. Chen. Polyethylene glycol modified PAMAM dendrimer delivery of Kartogenin to induce chondrogenic differentiation of mesenchymal stem cells. Nanomed. Nanotechnol. Biol. Med. 13:2189–2198, 2017.

    Article  CAS  Google Scholar 

  13. Jo, C. H., Y. G. Lee, W. H. Shin, H. Kim, J. W. Chai, E. C. Jeong, J. E. Kim, H. Shim, J. S. Shim, I. S. Shin, J. C. Ra, S. Oh, and K. S. Yoon. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32:1254–1266, 2014.

    Article  CAS  Google Scholar 

  14. Johnson, K., S. Zhu, M. S. Tremblay, J. N. Payette, J. Wang, L. C. Bouchez, S. Meeusen, A. Althage, C. Y. Cho, X. Wu, and P. G. Schultz. A stem cell-based approach to cartilage repair. Science 336:717, 2012.

    Article  CAS  Google Scholar 

  15. Kang, M. L., S. Y. Jeong, and G. I. Im. Hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic PEGylated Kartogenin for the treatment of osteoarthritis. Tissue Eng. Part A 23:630–639, 2017.

    Article  CAS  Google Scholar 

  16. Kang, M. L., J. E. Kim, and G. I. Im. Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomater. 39:65–78, 2016.

    Article  CAS  Google Scholar 

  17. Kang, M. L., J. Y. Ko, J. E. Kim, and G. I. Im. Intra-articular delivery of Kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. Biomaterials 35:9984–9994, 2014.

    Article  CAS  Google Scholar 

  18. Kang, H., K. Zhang, Q. Pan, S. Lin, D. S. H. Wong, J. Li, W. Y.-W. Lee, B. Yang, F. Han, G. Li, B. Li, and L. Bian. Remote control of intracellular calcium using upconversion nanotransducers regulates stem cell differentiation in vivo. Adv. Funct. Mater. 28:1802642, 2018.

    Article  Google Scholar 

  19. Kong, L., L. Z. Zheng, L. Qin, and K. K. W. Ho. Role of mesenchymal stem cells in osteoarthritis treatment. J. Orthop. Transl. 9:89–103, 2017.

    Google Scholar 

  20. Kristjansson, B., and S. Honsawek. Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int. 2014. https://doi.org/10.1155/2014/194318.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, X., J. Ding, Z. Zhang, M. Yang, J. Yu, J. Wang, F. Chang, and X. Chen. Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration. ACS Appl. Mater. Interfaces 8:5148–5159, 2016.

    Article  CAS  Google Scholar 

  22. Li, J., W. Y. W. Lee, T. Wu, J. Xu, K. Zhang, D. S. Hong Wong, R. Li, G. Li, and L. Bian. Near-infrared light-triggered release of small molecules for controlled differentiation and long-term tracking of stem cells in vivo using upconversion nanoparticles. Biomaterials 110:1–10, 2016.

    Article  Google Scholar 

  23. Makadia, H. K., and S. J. Siegel. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397, 2011.

    Article  CAS  Google Scholar 

  24. Martínez Rivas, C. J., M. Tarhini, W. Badri, K. Miladi, H. Greige-Gerges, Q. A. Nazari, S. A. Galindo Rodríguez, R. Á. Román, H. Fessi, and A. Elaissari. Nanoprecipitation process: from encapsulation to drug delivery. Int. J. Pharm. 532:66–81, 2017.

    Article  Google Scholar 

  25. Oueslati, N., P. Leblanc, C. Harscoat-Schiavo, E. Rondags, S. Meunier, R. Kapel, and I. Marc. CTAB turbidimetric method for assaying hyaluronic acid in complex environments and under cross-linked form. Carbohydr. Polym. 112:102–108, 2014.

    Article  CAS  Google Scholar 

  26. Pate, K., and P. Safier. Chemical metrology methods for CMP quality. In: Advances in Chemical Mechanical Planarization (CMP), edited by S. Babu. Cambridge: Woodhead Publishing, 2016, pp. 299–325.

    Chapter  Google Scholar 

  27. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    Article  CAS  Google Scholar 

  28. Rezvantalab, S., N. I. Drude, M. K. Moraveji, N. Güvener, E. K. Koons, Y. Shi, T. Lammers, and F. Kiessling. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 9:1260, 2018.

    Article  CAS  Google Scholar 

  29. Shang, L., K. Nienhaus, and G. U. Nienhaus. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol. 12:5, 2014.

    Article  Google Scholar 

  30. Shi, D., X. Xu, Y. Ye, K. Song, Y. Cheng, J. Di, Q. Hu, J. Li, H. Ju, Q. Jiang, and Z. Gu. Photo-cross-linked scaffold with Kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano 10:1292–1299, 2016.

    Article  CAS  Google Scholar 

  31. Soler, R. R., A. Munar, R. F. Soler, X. Peirau, M. Huguet, M. Alberca, A. Sanchez, S. J. Garcia, and L. Orozco. Treatment of knee osteoarthritis with autologous expanded bone marrow mesenchymal stem cells: 50 cases clinical and MRI results at one year follow-up. J. Stem Cell Res. Ther. 2015. https://doi.org/10.4172/2157-7633.1000285.

    Article  Google Scholar 

  32. Vangara, K. K., J. L. Liu, and S. Palakurthi. Hyaluronic acid-decorated PLGA–PEG nanoparticles for targeted delivery of SN-38 to ovarian cancer. Anticancer Res. 33:2425–2434, 2013.

    CAS  PubMed  Google Scholar 

  33. Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg. Mesenchymal cell-based repar of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. 76A:579–592, 1994.

    Article  Google Scholar 

  34. Wang, E. C., and A. Z. Wang. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. 6:9–26, 2014.

    Article  CAS  Google Scholar 

  35. Wittenauer, R., L. Smith, and K. Aden. Background Paper 612 Osteoarthritis. Geneva: World Health Organization, 2013.

    Google Scholar 

  36. Xu, Q., A. Crossley, and J. Czernuszka. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. J. Pharm. Sci. 98:2377–2389, 2009.

    Article  CAS  Google Scholar 

  37. Xu, J., J. Li, S. Lin, T. Wu, H. Huang, K. Zhang, Y. Sun, K. W. K. Yeung, G. Li, and L. Bian. Nanocarrier-mediated codelivery of small molecular drugs and siRNA to enhance chondrogenic differentiation and suppress hypertrophy of human mesenchymal stem cells. Adv. Funct. Mater. 26:2463–2472, 2016.

    Article  CAS  Google Scholar 

  38. Yadav, A. K., A. Agarwal, G. Rai, P. Mishra, S. Jain, A. K. Mishra, H. Agrawal, and G. P. Agrawal. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Drug Deliv. 17:561–572, 2010.

    Article  CAS  Google Scholar 

  39. Yang, W., Y. Zheng, J. Chen, Q. Zhu, L. Feng, Y. Lan, P. Zhu, S. Tang, and R. Guo. Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded Kartogenin for cartilage regeneration. Mater. Sci. Eng. C 99:1362–1373, 2019.

    Article  CAS  Google Scholar 

  40. Zhu, H., N. Mitsuhashi, A. Klein, L. W. Barsky, K. Weinberg, M. L. Barr, A. Demetriou, and G. D. Wu. The role of the hyaloronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Brown University. We thank Dr. Alessia Battigelli from Brown University for her helpful guidance on the chemical syntheses presented. We also thank Kevin Carlson from the Flow Cytometry Core at Brown University and Professor Robert Hurt at Brown for use of his DLS. Finally, we thank Anthony McCormick from Brown University’s Electron Microscopy Core Facility for assistance with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Shukla.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, B., Wang, Y. & Shukla, A. Effects of Nanoparticle Properties on Kartogenin Delivery and Interactions with Mesenchymal Stem Cells. Ann Biomed Eng 48, 2090–2102 (2020). https://doi.org/10.1007/s10439-019-02430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02430-x

Keywords

Navigation