Skip to main content
Log in

Intrinsic Feedbacks in MAPK Signaling Cascades Lead to Bistability and Oscillations

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that double phosphorylation of a protein can lead to bistability if some conditions are fulfilled. It was also shown that the signaling behavior of a covalent modification cycle can be quantitatively and, more importantly, qualitatively modified when this cycle is coupled to a signaling pathway as opposed to being isolated. This property was named retroactivity. These two results are studied together in this paper showing the existence of interesting phenomena—oscillations and bistability—in signaling cascades possessing at least one stage with a double-phosphorylation cycle as in MAPK cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Generally speaking, it would be desirable, in graphical representations of biochemical reactions, to use a specific type of arrow-symbol, whenever the phenomenon of sequestration is involved.

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K (2001) Molecular biology of the cell. Garland Science

  • Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 101:1822–1827

    Article  Google Scholar 

  • Bluthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, Kholodenko BN (2006) Detection of multi-stability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. FEBS J 273:895–906

    Article  Google Scholar 

  • Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161

    Article  Google Scholar 

  • Fages F, Soliman S (2008) In: Lecture notes in computer science, vol 5054. Springer, Berlin

  • Feliu E, Wiuf C (2012) Enzyme sharing as a cause of multi-stationarity in signaling systems. J R Soc Interface, 9(71):1224–1232

    Google Scholar 

  • Goldbeter A, Koshland J, DE (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78(11):6840–6844

  • Gonze D, Goldbeter A (2001) A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks. J Theor Biol 210:167–186

    Article  Google Scholar 

  • Gouzé J (1998) Positive and negative circuits in dynamical systems. J Biol Syst 6(1):11–15

    Article  Google Scholar 

  • Gross T, Feudel U (2006) Generalized models as an universal approach to the analysis of nonlinear dynamical systems. Phys Rev E 73:016205–016214

    Article  Google Scholar 

  • Huang CY, Ferrell J, JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93(19):10078–10083

  • Jiang P, Ventura AC, Sontag ED, Merajver SD, Ninfa AJ, Del Vecchio D (2011) Load-induced modulation of signal transduction networks. Sci Signal 4(194):1–10

    Google Scholar 

  • Kholodenko B (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267:1583–1588

    Article  Google Scholar 

  • Kim Y, Paroush Z, Nairz K, Hafen E, Jimenez G, Shvartsman SY (2011) Substrate-dependent control of mapk phosphorylation in vivo Mol Syst Biol 7:467

    Google Scholar 

  • Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353–359

    Article  Google Scholar 

  • Murray J (2002) Mathematical biology i : an introduction. 3rd edn. Springer, Berlin

    Google Scholar 

  • Murray AW, Kirschner MW (1989) Dominoes and clocks: the union of two views of the cell cycle. Science 246:614–621

    Article  Google Scholar 

  • Ortega F, Acerenza L, Westerhoff HV, Mas F, Cascante M (2002) Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades. Proc Natl Acad Sci USA 99:1170–1175

    Article  Google Scholar 

  • Ortega F, Garces JL, Mas F, Kholodenko BN, Cascante M (2006) Bistability from double phosphorylation in signal transduction. Kinetic and structural requirements. FEBS J. 273:3915–3926

    Article  Google Scholar 

  • Ossareh HR, Ventura AC, Merajver SD, Del Vecchio D (2011) Long signaling cascades tend to attenuate retroactivity. Biophys J 100(7):1617–1626

    Article  Google Scholar 

  • Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY (2007) Bistability and oscillations in the huang-ferrell model of mapk signaling. PLoS Comput Biol 3(9):1819–1826

    Article  Google Scholar 

  • Snoussi E, Thomas R (1993) Logical identi cation of all steady states: the concept of feedback loop characterisitic states. Bull Math Biol 55(5):973–991

    Google Scholar 

  • Thalhauser C, Komarova N (2010) Signal response sensitivity in the yeast mitogen-activated protein kinase cascade. PLoS One 5(7) doi:10.1371/journal.pone.0011568

  • Thattai M, van Oudenaarden A (2002) At-tenuation of noise in ultrasensitive signaling cascades. Biophys J 82:2943–2950

    Article  Google Scholar 

  • Thomas R, D’Ari R (1990) Biological Feedback. CRC Press, Boca Raton

    Google Scholar 

  • Ventura AC, Sepulchre JA, Merajver SD (2008) A hidden feedback in signaling cascades is revealed. PLoS Comput Biol 4(3):e1000041

    Article  Google Scholar 

  • Ventura A, Jackson T, Merajver S (2009) On the role of cell signaling models in cancer research. Cancer Res. 69:400–402

    Article  Google Scholar 

  • Ventura AC, Jiang P, Van Wassenhove L, Del Vecchio D, Merajver SD, Ninfa AJ (2010) Signaling properties of a covalent modification cycle are altered by a downstream target. Proc Natl Acad Sci U S A 107(22):10032–10037

    Article  Google Scholar 

  • Wagner E, Nebreda A (2009) Signal integration by jnk and p38 mapk pathways in cancer development. Nat Rev Cancer 9:537–549

    Article  Google Scholar 

  • Wynn ML, Ventura AC, Sepulchre JA, Garcia HJ, Merajver SD (2011) Kinase inhibitors can produce off-target effects and activate linked pathways by retroactivity. BMC Syst Biol 5:156

    Article  Google Scholar 

  • Zumsande M, Gross T (2010) Bifurcations and chaos in the mapk signaling cascade. J Theor Biol 265:481–491

    Article  Google Scholar 

Download references

Acknowledgments

The international program of scientific collaboration PICS 05922 between CNRS (France) and CONICET (Argentina) is acknowledged. ACV is a member of the Carrera del Investigador Cientfico (CONICET) and was supported by the Agencia Nacional de Promoción Cient fica y Tecnolgica (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques-Alexandre Sepulchre.

Appendices

Appendix 1: Simplified Kinetic Equations of the Double phosphorylation cascade

In this appendix we show how the 1-variable per cycle model (5)–(8) can be obtained from a singular perturbation analysis of the full mass-action kinetic equations. The procedure is standard, e.g. (Murray 2002).

According to the scheme in Eqs. (1), and using only the law of mass action, the dynamics of the i th cycle in a cascade of n cycles is governed by the conservation equations \( Y_{{iT}} = Y_{i} + Y_{i}^{*} + Y_{i}^{{**}} + C_{{i1}} + C_{{i2}} + C_{{i1}}^{\prime } + C_{{i2}}^{\prime } + C_{{i + 1,1}} + C_{{i + 1,2}} \) and E iT  = E i  + C i1  + C i2 and by the following differential equations:

$$ \begin{aligned} \frac{d Y_i^{**} }{dt} &= k_{i2} C_{i2} - a_{i1}^{\prime} Y^{**}_i E_i^{\prime} + d_{i1}^{\prime} C_{i1}^{\prime} - a_{i+1,1} Y_{i+1} Y_{i}^{**} + (k_{i+1,1}+d_{i+1,1}) C_{i+1,1}\\ &\quad- a_{i+1,2} Y_{i+1}^{*} Y_{i}^{**} + (k_{i+1,2}+d_{i+1,2}) C_{i+1,2} \\ \frac{d Y_i}{dt} &= k_{i2}^{\prime} C_{i2}^{\prime} - a_{i1} Y_i Y^{**}_{i-1} + d_{i1} C_{i1} \\ \frac{d C_{i1} }{dt} &= a_{i1} Y_i Y_{i-1}^{**} - (k_{i1}+d_{i1}) C_{i1} \\ \frac{d C_{i2} }{dt} &= a_{i2} Y_i^* Y_{i-1}^{**} - (k_{i2}+d_{i2}) C_{i2} \\ \frac{d C_{i1}^{\prime} }{dt} & = a_{i1}^{\prime} Y_i^{**} E_i^{\prime} -(k_{i1}^{\prime}+d_{i1}^{\prime}) C_{i1}^{\prime}\\ \frac{d C_{i2}^{\prime} }{dt} &= a_{i2}^{\prime} Y_i^{*} E_i^{\prime} -(k_{i2}^{\prime}+d_{i2}^{\prime}) C_{i2}^{\prime} \end{aligned} $$
(20)

with \( i = 1, \ldots n, \) with the convention that \( Y_{0}^{{**}} \) is related to the input stimulus, whereas Y n+1 = C n+1, j  = 0 (j = 1,2).

As described in Sect. 2, we define the parameters ε i  = E iT / Y iT and η i  = Y i-1,T /Y iT . Michaelis constants are defined as usual as K ij  = (k ij  + d ij )/a ij and K ij  = (k ij  + d ij )/a ij . We define also new variables X i  = Y ** i  + C i+1,1 + C i+1,2 that reveal to be natural slow variables of the system. The variables are turned into dimensionless ones in the following way:

$$ x_i = \frac{ X_i }{Y_{iT}}, \quad y_i = \frac{ Y_i }{ Y_{iT}}, \quad c_{ij}= \frac{ C_{ij} }{Y_{i-1,T}}, \quad c_{ij}^{\prime} = \frac{ C_{ij}^{\prime} }{E_{iT}^{\prime}}, \quad e_i^{\prime} = \frac{ E_i^{\prime} }{E_{iT}^{\prime}}. $$
(21)

The previous system of ODEs can be then written as:

$$ \frac{d x_i }{dt} = \eta_i k_{i2} c_{i2} - \epsilon_i k_{i1}^{\prime} c_{i1}^{\prime} - \epsilon_i a_{i1}^{\prime} Y_{iT} \left[ ( x_i-c_{i+1,1}-c_{i+1,2}) e_i^{\prime} - K_{i1}^{\prime} c_{i1}^{\prime} \right] $$
(22)
$$ \frac{d y_i }{dt} = \epsilon_i k_{i2}^{\prime} c_{i2}^{\prime} - \eta_i k_{i1} c_{i1} - \eta_i a_{i1} Y_{iT} \left[ y_i ( x_i-c_{i+1,1}-c_{i+1,2}) - K_{i1} c_{i1} \right] $$
(23)
$$ \frac{d c_{i1} }{dt} = a_{i1} Y_{iT} \left( y_i (x_{i-1} -c_{i1}-c_{i1}) - K_{i1} c_{i1} \right) $$
(24)
$$ \frac{d c_{i2} }{dt} = a_{i2} Y_{iT} \left( y^*_i (x_{i-1} -c_{i1}-c_{i1}) - K_{i2} c_{i2} \right) $$
(25)
$$ \frac{d c_{i1}^{\prime} }{dt} = a_{i1}^{\prime} Y_{iT} \left( (x_i-c_{i+1,1}-c_{i+1,2}) e_{i}^{\prime} - K_{i1}^{\prime} c_{i1}^{\prime} \right) $$
(26)
$$ \frac{d c_{i2}^{\prime} }{dt} = a_{i2}^{\prime} Y_{iT} \left( y^*_i e_{i}^{\prime} - K_{i2}^{\prime} c_{i2}^{\prime} \right) $$
(27)

with \(i=1,\ldots,n,\) with again the convention that in these equations c n+1,j  = 0, and x 0 = S denotes the input stimulus (e.g. some available active enzyme) normalized by η1 Y 1T . Here the conservation laws become \(x_i + y^*_i + y_i + \eta_i (c_{i1} + c_{i2} ) + \epsilon_i ( c_{i1}^{\prime} + c_{i2}^{\prime}) = 1\) and \(c_{i1}^{\prime} + c_{i2}^{\prime} + e_i^{\prime} = 1\).

Now, in the limit where all \(\epsilon_i \rightarrow 0,\) and assuming that \(k_{i1} \eta_i \sim k_{i2}^{\prime} \epsilon_i\) and \(k_{i2} \eta_i \sim k_{i1}^{\prime} \epsilon_i,\) we get a slow dynamics for the variables x i and y i as compared with the rates of change of the complexes c i and \(c_i^{\prime},\) so that the quasi-steady state approximation can be applied. Let us assume that \(\epsilon\) is a representative value of the set \(\{ \epsilon_1, \epsilon_2, \cdots, \epsilon_n \}\) and consider a slow time-scale \(\tilde{t} = \epsilon t\) with the time-derivative with respect to \(\tilde{t}\) that is denoted by a dot, i.e. \(\dot{x} = dx/d \tilde{t}\). By imposing that \(\dot{c}_{ij} = \dot{c}_{ij}^{\prime} =0,\) a little calculation gives:

$$ \begin{aligned} c_{i1} &= x_{i-1} \frac{y_i/K_{i1}}{1+y_i/K_{i1}+y^*_i/K_{i2}} \\ c_{i2} &= x_{i-1} \frac{y^*_i/ K_{i2}}{1+y_i/ K_{i1}+y^*_i/ K_{i2}} \\ c_{i1}^{\prime} & = \frac{x_i/ K_{i1}^{\prime}}{(1+y_{i+1}/K_{i+1,1}+y^*_{i+1}/K_{i+1,2})(1+y^*_i/ K_{i2}^{\prime}) +x_i/ K_{i1}^{\prime}} \\ c_{i2}^{\prime} &= \frac{y^*_i/ K_{i2}^{\prime}}{1+y_i/ K_{i1}^{\prime}+y^*_i/ K_{i2}^{\prime}} \\ \end{aligned} $$

Finally, the substitution of these expressions in Eqs. (22) gives the new model Eqs. (5)–(8), with \(V_{ij} = k_{ij} \eta_i / \epsilon\) and \(V_{ij}^{\prime} = k_{ij}^{\prime} \epsilon_i / \epsilon\).

Appendix 2: Computation of the Interaction Graph

In this Appendix we prove inequalities (9) in order to show that in the interaction graph (Fig. 3) the variables at stage i + 1 of the cascade have a negative influence on the variables at stage i. This can be achieved by computing the corresponding elements of the Jacobian matrix as follows :

$$ \frac{\partial \dot{x}_i}{\partial x_{i+1}} = \frac{V_{i1}^{\prime} x_i}{(K_{eff,i1}^{\prime}+x_i)^2} \frac{K_{i1}^{\prime}\left(1+\frac{y_i^*}{K_{i2}^{\prime}}\right)}{K_{i+1,2}} \frac{\partial y_{i+1}^*}{\partial x_{i+1}} $$
(28)
$$ \frac{\partial \dot{x}_i}{\partial y_{i+1}} = \frac{V_{i1}^{\prime} x_i}{(K_{eff,i1}^{\prime}+x_i)^2} \frac{K_{i1}^{\prime}\left(1+\frac{y_i^*}{K_{i2}^{\prime}}\right)}{K_{i+1,2}} \frac{\partial y_{i+1}^*}{\partial y_{i+1}} $$
(29)
$$ \frac{\partial \dot{y}_i}{\partial x_{i+1}} = \frac{V^\prime_{i2} y_i^* }{(K_{eff,i2}^{\prime} + y_i^* )^2 } \frac{K_{i2}^\prime x_i }{ K_{i1}^\prime \left(\frac{y_{i+1}}{K_{i+1,1}}+\frac{y^*_{i+1}}{K_{i+1,2}}\right)^2 K_{i+1,2}} \frac{\partial y_{i+1}^*}{\partial x_{i+1}} $$
(30)
$$ \frac{\partial \dot{y}_i}{\partial y_{i+1}} = \frac{V^\prime_{i2} y_i^* }{(K_{eff,i2}^{\prime} + y_i^* )^2 } \frac{K_{i2}^\prime x_i }{ K_{i1}^\prime \left(\frac{y_{i+1}}{K_{i+1,1}}+\frac{y^*_{i+1}}{K_{i+1,2}}\right)^2 K_{i+1,2}} \frac{\partial y_{i+1}^*}{\partial y_{i+1}} $$
(31)

and the remaining partial derivatives can be computed by using the conservation law (7). These factors are always negative:

$$ \begin{aligned} \frac{\partial y_{i+1}^*}{\partial x_{i+1}} &= - \left( \frac{1}{1+\eta_{i+1} x_i \frac{1/K_{i+1,2}}{ (1+y_{i+1}/K_{i+1,1} + y_{i+1}^*/K_{i+1,2})^2}} \right) \\ \frac{\partial y_{i+1}^*}{\partial y_{i+1}} &= - \left( \frac{1+\eta_{i+1} x_i \frac{1/K_{i+1,1}}{ (1+y_{i+1}/K_{i+1,1} + y_{i+1}^*/K_{i+1,2})^2}}{1+\eta_{i+1} x_i \frac{1/K_{i+1,2}}{ (1+y_{i+1}/K_{i+1,1} + y_{i+1}^*/K_{i+1,2})^2}} \right) \end{aligned} $$

Appendix 3: Computation of the Steady-States for a 2-Stage Cascade

We consider the following reactions for the upper cycle in Fig. 9:

$$ \begin{aligned} &Y_1 + A \mathrel{\mathop{{\rightleftharpoons}}\limits^{{a}}_{{d}}} C_{A} \mathrel{\mathop{{\longrightarrow}}\limits^{{k}}} Y^*_1 + A \\ &Y^*_1 + D\mathrel{\mathop{{\rightleftharpoons}} \limits^{{a^{\prime}}}_{{d^{\prime}}}} \,C_{D} \mathrel{\mathop{{\longrightarrow}}\limits^{{k^{\prime}}}} Y_1 + D \end{aligned} $$
(32)

with A and D the activator and inactivator enzymes, respectively. Assuming A and D are approximately constants and solving for the steady-states, we obtain:

$$ y_1=\omega y_1^* $$
(33)

with \(\omega=(k^{\prime} K_m D)/(k K_m^{\prime} A)\). This last result implies that the conservation law for the protein in the upper cycle con be written (neglecting the complexes with the activator and the inactivator, but not those with the downstream targets, and dividing the equation by Y 1T ) as: 1 = \( y_{1}^{*} \)(1 + ω) + c 1 + c 2, with c 1 and c 2 the normalized complexes with the downstream (double-phosphorylation) cycle. By writing the corresponding equations for c 1 and c 2, solving for the steady-state, and using the previous conservation, we obtain Eq. (18).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sepulchre, JA., Ventura, A.C. Intrinsic Feedbacks in MAPK Signaling Cascades Lead to Bistability and Oscillations. Acta Biotheor 61, 59–78 (2013). https://doi.org/10.1007/s10441-013-9177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-013-9177-5

Keywords

Navigation