Skip to main content
Log in

Differentiability of multivariate refinable functions and factorization

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper develops a necessary condition for the regularity of a multivariate refinable function in terms of a factorization property of the associated subdivision mask. The extension to arbitrary isotropic dilation matrices necessitates the introduction of the concepts of restricted and renormalized convergence of a subdivision scheme as well as the notion of subconvergence, i.e., the convergence of only a subsequence of the iterations of the subdivision scheme. Since, in addition, factorization methods pass even from scalar to matrix valued refinable functions, those results have to be formulated in terms of matrix refinable functions or vector subdivision schemes, respectively, in order to be suitable for iterated application. Moreover, it is shown for a particular case that the the condition is not only a necessary but also a sufficient one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary Subdivision, Memoirs of the AMS, Vol. 93 (453) (Amer. Math. Soc., Providence, RI, 1991).

    Google Scholar 

  2. A. Cohen, N. Dyn and D. Levin, Stability and interdependence of matrix subdivision schemes, in: Advanced Topics in Multivariate Approximation, eds. F. Fontanella, K. Jetter and P.-J. Laurent (1996).

  3. W. Dahmen and C.A. Micchelli, Stationary subdivision, fractals and wavelets, in: Computation of Curves and Surfaces, eds. W. Dahmen, M. Gasca and C.A. Micchelli (Kluwer, Dordrecht, 1990) pp. 3–26.

    Google Scholar 

  4. W. Dahmen and C.A. Micchelli, Biorthogonal wavelet expansion, Constr. Approx. 13 (1997) 294–328.

    Article  MathSciNet  Google Scholar 

  5. N. Dyn, Subdivision schemes in Computer Aided Geometric Design, in: Advances in Numerical Analysis, Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions, ed. W. Light (1992) pp. 36–104.

  6. R.-Q. Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc. 351 (1999) 4089–4112.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.Q. Jia and C.A. Micchelli, On the linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992) 69–85.

    Article  MathSciNet  Google Scholar 

  8. Q. Jiang and P. Oswald, Triangular \(\sqrt{3}\) -subdivision schemes: the regular case, J. Comput. Appl. Math. 156 (2003) 47–75.

    MathSciNet  MATH  Google Scholar 

  9. L. Kobbelt, \(\sqrt{3}\) -subdivision, in: Proceedings of SIGGRAPH 2000 (2000) pp. 103–112.

  10. V. Latour, J. Müller and W. Nickel, Stationary subdivision for general scaling matrices, Math. Z. 227 (1998) 645–661.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities (Prindle, Weber & Schmidt, 1969); Paperback reprint (Dover Publications, 1992).

  12. C.A. Micchelli, Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 65 (SIAM, Philadelphia, PA, 1995).

    MATH  Google Scholar 

  13. C.A. Micchelli and T. Sauer, Regularity of multiwavelets, Adv. Comput. Math. 7(4) (1997) 455–545.

    Article  MathSciNet  MATH  Google Scholar 

  14. C.A. Micchelli and T. Sauer, On vector subdivision, Math. Z. 229 (1998) 621–674.

    Article  MathSciNet  MATH  Google Scholar 

  15. C.A. Micchelli, T. Sauer and Y. Xu, Subdivision schemes for iterated function systems, Proc. Amer. Math. Soc. 129 (2001) 1861–1872.

    Article  MathSciNet  MATH  Google Scholar 

  16. H.M. Möller and T. Sauer, Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials, Adv. Comput. Math. 20 (2004) 205–228.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Plonka, Approximation order provided by refinable function vectors, Constr. Approx. 13 (1997) 221–244.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Sauer, Polynomial interpolation, ideals and approximation order of refinable functions, Proc. Amer. Math. Soc. 130 (2002) 3335–3347.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Sauer, Stationary vector subdivision – quotient ideals, differences and approximation power, Rev. R. Acad. Cien. Serie A. Mat. 96 (2002) 257–277.

    MATH  MathSciNet  Google Scholar 

  20. T. Sauer, How to generate smoother refinable functions from given ones, in: Modern Developments in Multivariate Approximation, eds. W. Haussmann, K. Jetter, M. Reimer and J. Stöckler, International Series of Numerical Mathematics, Vol. 145 (2003) pp. 279–294.

  21. W.-H. Steeb, Kronecker Product of Matrices and Applications (BI-Wiss.-Verlag, 1991).

  22. A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, 2nd edn (Wiley, New York, 1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T.N.T. Goodman

Dedicated to Charles A. Micchelli, a unique person, friend, mathematician and collaborator, on the occasion of his sixtieth birthday

Mathematics subject classifications (2000)

65T60, 65D99.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, T. Differentiability of multivariate refinable functions and factorization. Adv Comput Math 25, 211–235 (2006). https://doi.org/10.1007/s10444-004-7635-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-7635-y

Keywords

Navigation