Skip to main content
Log in

Estimating pore size distributions of activated carbons via optical calorimetry

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Optical calorimetry is a powerful technique for the characterization of porous materials within only a few minutes (e.g. specific surface area, adsorption capacity). In the current work, optical calorimetry is presented to be a versatile tool for the pore size characterization of activated carbons. Therefore, measurements were performed with six different test gases (N2O, C2H6, C3H8, n-C4H10, i-C4H10, SF6) in the optical calorimeter InfraSORP at ambient conditions. By combining the results of optical calorimetric measurement for each adsorptive, a pore size distribution (PSD) can be estimated in the range of 0.4–6 nm which is in accurate accordance with the PSD of reference CO2 (273 K) and N2 (77 K) physisorption experiments. While common physisorption experiments can easily take a few days, the PSD by using the optical calorimetric screening is obtained within roughly 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Böhringer, B., Guerra Gonzalez, O., Eckle, I., Müller, M., Giebelhausen, J.-M., Schrage, C., Fichtner, S.: Polymer-based spherical activated carbons—from adsorptive properties to filter performance. Chem. Ing. Tech. 83, 53–60 (2011)

    Article  Google Scholar 

  • Bon, V., Kavoosi, N., Senkovska, I., Kaskel, S.: Tolerance of flexible MOFs toward repeated adsorption stress. ACS Appl. Mater. Interfaces. 7, 22292–22300 (2015)

    Article  CAS  Google Scholar 

  • Cao, D., Sircar, S.: Heat of adsorption of pure sulfur hexafluoride on micro-mesoporous adsorbents. Adsorption 7, 73–80 (2001)

    Article  CAS  Google Scholar 

  • Cao, X.L., Colenutt, B.A., Sing, K.S.W.: Study of microporous carbons by gas chromatographic determination of heats of physisorption. J. Chromatogr. A. 555, 183–190 (1991)

    Article  CAS  Google Scholar 

  • Denoyel, R., Fernandez-Colinas, J., Grillet, Y., Rouquerol, J.: Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data. Langmuir 9, 515–518 (1993)

    Article  CAS  Google Scholar 

  • Ferreira, A.F.P., Mittelmeijer-Hazeleger, M.C., Bliek, A.: Adsorption and differential heats of adsorption of normal and iso-butane on zeolite MFI. Microporous Mesoporous Mater. 91, 47–52 (2006)

    Article  CAS  Google Scholar 

  • Hartmann, M., Kunz, S., Himsl, D., Tangermann, O., Ernst, S., Wagener, A.: Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 24, 8634–8642 (2008)

    Article  CAS  Google Scholar 

  • Kulprathipanja, S.: Zeolites in Industrial Separation and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)

    Book  Google Scholar 

  • Leistner, M., Grählert, W., Kaskel, S.: Screening of porous materials by thermal response measurements. Chem. Ing. Tech. 85, 747–752 (2013)

    Article  CAS  Google Scholar 

  • Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  • Li, Z.J., Jin, S.L., Zhan, S.M., Jiang, N., Shao, X., Jin, M.L., Zhang, R.: Dibenzothiophene adsorption on activated carbons and its water effect. In: Hu, J.W. (ed.) Advanced materials and structural engineering, pp. 57–61. Taylor & Francis Group, London (2016)

    Chapter  Google Scholar 

  • Morris, R.E., Wheatley, P.S.: Gas storage in nanoporous materials. Angew. Chem. Int. Ed. Engl. 47, 4966–4981 (2008)

    Article  CAS  Google Scholar 

  • Oschatz, M., Leistner, M., Nickel, W., Kaskel, S.: Advanced structural analysis of nanoporous materials by thermal response measurements. Langmuir 31, 4040–4047 (2015)

    Article  CAS  Google Scholar 

  • Peng, Y., Zhang, F., Xu, C., Xiao, Q., Zhong, Y., Zhu, W.: Adsorption of nitrous oxide on activated carbons. J. Chem. Eng. Data. 54, 3079–3081 (2009)

    Article  CAS  Google Scholar 

  • Sandra, F., Klein, N., Leistner, M., Lohe, M.R., Benusch, M., Woellner, M., Grothe, J., Kaskel, S.: Speeding up chemisorption analysis by direct IR-heat-release measurements (infrasorp technology): a screening alternative to breakthrough measurements. Ind. Eng. Chem. Res. 54, 6677–6682 (2015)

    Article  CAS  Google Scholar 

  • Silvestre-Albero, J.: Characterization of microporous solids by immersion calorimetry. Colloids Surf. A 188, 151–165 (2001)

    Article  Google Scholar 

  • Sircar, S., Golden, T.C., Rao, M.B.: Activated carbon for gas separation and storage. Carbon. 34, 1–12 (1996)

    Article  CAS  Google Scholar 

  • Stoeckli, F., Centeno, T.A.: On the characterization of microporous carbons by immersion calorimetry alone. Carbon 35, 1097–1100 (1997)

    Article  CAS  Google Scholar 

  • Walton, K.S., Cavalcante, C.L. Jr., Douglas Levan, M.: Adsorption of light alkanes on coconut nanoporous activated carbon. Braz. J. Chem. Eng. 23, 555–561 (2006)

    Article  CAS  Google Scholar 

  • Wollmann, P., Leistner, M., Stoeck, U., Grünker, R., Gedrich, K., Klein, N., Throl, O., Grählert, W., Senkovska, I., Dreisbach, F., Kaskel, S.: High-throughput screening: speeding up porous materials discovery. Chem. Commun. 47, 5151–5153 (2011)

    Article  CAS  Google Scholar 

  • Wollmann, P., Leistner, M., Grählert, W., Throl, O., Dreisbach, F., Kaskel, S.: Infrasorb: optical detection of the heat of adsorption for high throughput adsorption screening of porous solids. Microporous Mesoporous Mater. 149, 86–94 (2012)

    Article  CAS  Google Scholar 

  • Zhu, W., Groen, J.C., Miltenburg, A., Kapteijn, F., Moulijn, J.A.: Comparison of adsorption behaviour of light alkanes and alkenes on kureha activated carbon. Carbon 43, 1416–1423 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Dr. Martin Oschatz and M. Sc. Winfried Nickel (TU Dresden) are kindly acknowledged for support during the physisorption experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kaskel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 956 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wöllner, M., Leistner, M., Wollmann, P. et al. Estimating pore size distributions of activated carbons via optical calorimetry. Adsorption 23, 313–320 (2017). https://doi.org/10.1007/s10450-016-9852-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9852-3

Keywords

Navigation