Skip to main content

Advertisement

Log in

Climate change and freshwater zooplankton: what does it boil down to?

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrusán G (2004) Filamentous cyanobacteria, temperature and Daphnia growth: the role of fluid mechanics. Oecologia 141:395–401

    Article  PubMed  Google Scholar 

  • Adrian R, Deneke R (1996) Possible impact of mild winters on zooplankton succession in eutrophic lakes of the Atlantic European area. Freshw Biol 36:757–770

    Article  Google Scholar 

  • Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41:621–634

    Article  Google Scholar 

  • Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Chang Biol 12:652–661

    Article  Google Scholar 

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  PubMed  Google Scholar 

  • Allan RJ, Lindesay J, Parker D (1996) El Nino-Southern Oscillation and climatic variability. CSIRO Publishing, Collingwood

    Google Scholar 

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics and the energetic-equivalence rule. Science 297:1545–1548

    Article  PubMed  CAS  Google Scholar 

  • Alonso C, Rocco V, Barriga JP, Battini MA, Zagarese H (2004) Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation. Limnol Oceanogr 49:225–232

    Article  CAS  Google Scholar 

  • Alvarez-Cobelas M, Rojo C (2000) Ecological goal functions and plankton communities in lakes. J Plankton Res 22:729–748

    Article  Google Scholar 

  • Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK (2006) Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Sci Total Environ 365:223–237

    Article  PubMed  CAS  Google Scholar 

  • Arnott SE, Yan ND (2002) The influence of drought and re-acidification on zooplankton emergence from resting stages. Ecol Appl 12:138–153

    Article  Google Scholar 

  • Arnott SE, Keller B, Dillon PJ, Yan N, Paterson M, Findlay D (2003) Using temporal coherence to determine the response to climate change in Boreal Shield Lakes. Environ Monit Assess 88:365–388

    Article  PubMed  CAS  Google Scholar 

  • Arora VK, Boer GJ (2001) Effects of simulated climate change on the hydrology of major river basins. J Geophys Res 106:3335–3348

    Article  Google Scholar 

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Atkinson D (1995) Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. J Therm Biol 20:61–74

    Article  Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  PubMed  CAS  Google Scholar 

  • Atkinson D, Ciotti BJ, Montagnes DJS (2003) Protists decrease in size linearly with temperature: ca. 2.5%°C-1. Proc R Soc B 270:2605–2611

    Article  PubMed  Google Scholar 

  • Battarbee RW (2000) Palaeolimnological approaches to climate change, with special regard to the biological record. Quat Sci Rev 19:107–124

    Article  Google Scholar 

  • Benndorf J, Kranich J, Mehner T, Wagner A (2001) Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from the biomanipulated Bautzen Reservoir (Germany). Freshw Biol 46:199–211

    Article  Google Scholar 

  • Blenckner T, Omstedt A, Rummukainen M (2002) A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquat Sci 64:171–184

    Article  Google Scholar 

  • Blenckner T, Adrian R, Livingstone DM, Jennings E, Weyhenmeyer GA, George DG et al (2007) Large-scale climatic signatures in lakes across Europe: a meta-analysis. Glob Chang Biol 13:1314–1326

    Article  Google Scholar 

  • Brett MT, Müller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150:28–35

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Cabrera S, López M, Tartarotti B (1997) Phytoplankton and zooplankton response to ultraviolet radiation in a high-altitude Andean lake: short- versus long-term effects. J Plankton Res 19:1565–1582

    Article  CAS  Google Scholar 

  • Cáceres CE (1998) Interspecific variation in the abundance, production and emergence of Daphnia diapausing eggs. Ecology 79:1699–1710

    Google Scholar 

  • Cáceres CE, Schwalbach MS (2001) How well do laboratory experiments explain field patterns of zooplankton emergence? Freshw Biol 46:1179–1189

    Article  Google Scholar 

  • Chen CY, Folt CL (1996) Consequences of fall warming for zooplankton overwintering success. Limnol Oceanogr 41:1077–1086

    Article  Google Scholar 

  • Chen CY, Folt CL (2002) Ecophysiological responses to warming events by two sympatric zooplankton species. J Plankton Res 24:579–589

    Article  Google Scholar 

  • Chivas AR, De Deckker P, Shelley JMG (1985) Strontium content of ostracods indicates lacustrine palaeosalinity. Nature 316:251–253

    Article  CAS  Google Scholar 

  • Coats R, Perez-Losada J, Schladow G, Richards R, Goldman C (2006) The warming of Lake Tahoe. Clim Chang 76:121–148

    Article  Google Scholar 

  • Cooke SL, Williamson CE, Saros JE (2006) How do temperature, dissolved organic matter and nutrients influence the response of Leptodiaptomus ashlandi to UV radiation in a subalpine lake? Freshw Biol 51:1827–1837

    Article  CAS  Google Scholar 

  • Cushing DH (1969) The regularity of the spawning season of some fishes. ICES J Mar Sci 33:81–92

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788–12793

    Article  PubMed  CAS  Google Scholar 

  • De Lange HJ, Van Donk E (1997) Effects of UVB-irradiated algae on life history traits of Daphnia pulex. Freshw Biol 38:711–720

    Article  Google Scholar 

  • De Lange HJ, Van Reeuwijk PL (2003) Negative effects of UVB-irradiated phytoplankton on life history traits and fitness of Daphnia magna. Freshw Biol 48:678–686

    Article  Google Scholar 

  • De Senerpont Domis LNW, Mooij M, Huisman J (2007a) Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia 584:403–413

    Article  Google Scholar 

  • De Senerpont Domis LNW, Mooij M, Hülsmann S, Van Nes EH, Scheffer M (2007b) Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions? Oecologia 150:682–698

    Article  PubMed  Google Scholar 

  • De Stasio BT, Hill DK, Kleinhans JM, Nibbelink NP, Magnuson JJ (1996) Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnol Oceanogr 41:1136–1149

    Article  Google Scholar 

  • Deksne R, Škute A, Paidere J (2010) Changes in structure of zooplankton communities in the middle Daugava (Western Dvina) over the last five decades. Acta Zool Litu 20:190–208

    Article  Google Scholar 

  • Diehl S, Berger S, Ptacnik R, Wild A (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83:399–411

    Article  Google Scholar 

  • Dokulil MT, Herzig A (2009) An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquat Ecol 43:715–725

    Article  CAS  Google Scholar 

  • Drake JM (2005) Population effects of increased climate variation. Proc R Soc B 272:1823–1827

    Article  PubMed  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    Article  PubMed  Google Scholar 

  • Dupuis AP, Hann BJ (2009a) Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and zooplankton. J Plankton Res 31:489–502

    Article  CAS  Google Scholar 

  • Dupuis AP, Hann BJ (2009b) Climate change, diapause termination and zooplankton population dynamics: an experimental and modelling approach. Freshw Biol 54:221–235

    Article  Google Scholar 

  • Durant JM, Hjermann DO, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283

    Article  Google Scholar 

  • Edwards M, Richardson A (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Elliott JA (2010) The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob Chang Biol 16:864–876

    Article  Google Scholar 

  • Elliott JA, Thackeray SJ, Huntingford C, Jones RG (2005) Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Freshw Biol 50:1404–1411

    Article  Google Scholar 

  • Fang X, Stefan HG, Alam SR (1999) Simulation and validation of fish thermal DO habitat in north-central US lakes under different climate scenarios. Ecol Modell 118:167–191

    Article  CAS  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L et al (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Fulton RS, Paerl HW (1988) Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations. Oecologia 76:383–389

    Google Scholar 

  • Gaedke U, Ollinger D, Bauerle E, Straile D (1998) The impact of the interannual variability in hydrodynamic conditions on the plankton development in Lake Constance in spring and summer. Adv Limnol 53:565–585

    Google Scholar 

  • George DG (2000) The impact of regional-scale changes in the weather on the long-term dynamics of Eudiaptomus and Daphnia in Esthwaite Water, Cumbria. Freshw Biol 45:111–121

    Article  Google Scholar 

  • George DG, Harris GP (1985) The effect of climate on long-term changes in the crustacean zooplankton biomass of Lake Windermere, UK. Nature 316:536–539

    Article  Google Scholar 

  • George DG, Hewitt DP, Lund JWG, Smyly WJP (1990) The relative effects of enrichment and climate change on the long-term dynamics of Daphnia in Esthwaite Water, Cumbria. Freshw Biol 23:55–70

    Article  Google Scholar 

  • Germ M, Simcic T, Gaberscik A, Breznik B, Hrastel M (2004) UV-B treated algae exhibiting different responses as a food source for Daphnia magna. J Plankton Res 26:1219–1228

    Article  Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066

    Article  Google Scholar 

  • Giebelhausen B, Lampert W (2001) Temperature reaction norms of Daphnia magna: the effect of food concentration. Freshw Biol 46:281–289

    Article  Google Scholar 

  • Gilbert JJ, Schröder T (2004) Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnol Oceanogr 49:1341–1354

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73

    Article  PubMed  CAS  Google Scholar 

  • Gooseff MN, Strzepek K, Chapra SC (2005) Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, Lower Madison River, MT. Clim Chang 68:331–353

    Article  CAS  Google Scholar 

  • Gophen M (1976a) Temperature effect on lifespan, metabolism, and development time of Mesocyclops leuckarti (Claus). Oecologia 25:271–277

    Article  Google Scholar 

  • Gophen M (1976b) Temperature dependence of food intake, ammonia excretion and respiration in Ceriodaphnia reticulata (Jurine) (Lake Kinneret, Israel). Freshw Biol 6:451–455

    Article  CAS  Google Scholar 

  • Grad G, Burnett BJ, Williamson CE (2003) UV damage and photoreactivation: timing and age are everything. Photochem Photobiol 78:225–227

    Article  PubMed  CAS  Google Scholar 

  • Gragnani A, Scheffer M, Rinaldi S (1999) Top-down control of cyanobacteria: a theoretical analysis. Am Nat 153:59–72

    Article  Google Scholar 

  • Gulati R, Demott W (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw Biol 38:753–768

    Article  Google Scholar 

  • Gyllström M, Hansson LA (2004) Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat Sci 66:274–295

    Article  Google Scholar 

  • Gyllström M, Hansson LA, Jeppesen E, García-Criado F, Gross E, Irvine K et al (2005) The role of climate in shaping zooplankton communities in shallow lakes. Limnol Oceanogr 50:2008–2021

    Article  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (2003) Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 2:39–50

    Article  PubMed  CAS  Google Scholar 

  • Hairston NG (1996) Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr 41:1087–1092

    Article  Google Scholar 

  • Hairston NG, Kearns CM (2002) Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr Comp Biol 42:481–491

    Article  PubMed  Google Scholar 

  • Hallett TB, Coulson T, Pilkington JG, Clutton-Brock TH, Pemberton JM, Grenfell BT (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75

    Article  PubMed  CAS  Google Scholar 

  • Hampton SE, Izmest’eva LR, Moore MV, Katz SL, Dennis B, Silow EA (2008) Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Glob Chang Biol 14:1947–1958

    Article  Google Scholar 

  • Haney JF (1987) Field studies on zooplankton-cyanobacteria interactions. N Z J Mar Freshw Res 21:467–475

    Article  Google Scholar 

  • Hansson LA, Gustafsson S, Rengefors K, Bomark L (2007a) Cyanobacterial chemical warfare affects zooplankton community composition. Freshw Biol 52:1290–1301

    Article  CAS  Google Scholar 

  • Hansson LA, Hylander S, Sommaruga R (2007b) Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation. Ecology 88:1932–1939

    Article  PubMed  Google Scholar 

  • Hartman MD, Baron JS, Ojima DS (2006) Application of a coupled ecosystem chemical equilibrium model, DayCent-Chem, to stream and soil chemistry in a Rocky Mountain watershed. Ecol Modell 200:493–510

    Article  Google Scholar 

  • Hartmann DL, Wallace JM, Limpasuvan V, Thompson DWJ, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? Proc Natl Acad Sci USA 97:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Havel JE, Medley KA (2006) Biological invasions across spatial scales: intercontinental, regional, and local dispersal of cladoceran zooplankton. Biol Invasions 8:459–473

    Article  Google Scholar 

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  PubMed  Google Scholar 

  • Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54

    Article  PubMed  Google Scholar 

  • Helland IP, Freyhof J, Kasprzak P, Mehner T (2007) Temperature sensitivity of vertical distributions of zooplankton and planktivorous fish in a stratified lake. Oecologia 151:322–330

    Article  PubMed  Google Scholar 

  • Hessen DO, De Lange HJ, Van Donk E (1997) UV-induced changes in phytoplankton cells and its effects on grazers. Freshw Biol 38:513–524

    Article  Google Scholar 

  • Hietala J, Laurén-Määttä C, Walls M (1997) Sensitivity of Daphnia to toxic cyanobacteria: effects of genotype and temperature. Freshw Biol 37:299–306

    Article  Google Scholar 

  • Hostetler SW, Small EE (1999) Response of North American freshwater lakes to simulated future climates. J Am Water Resour Assoc 35:1625–1637

    Article  Google Scholar 

  • Huber V, Adrian R, Gerten D (2010) A matter of timing: heat wave impact on crustacean zooplankton. Freshw Biol 55:1769–1779

    Google Scholar 

  • Hufnagel L, Gaál M (2005) Seasonal dynamic pattern analysis in service of climate change research. Appl Ecol Environ Res 3:79–132

    Google Scholar 

  • Huisman J, Arrayas SK, Ebert U, Sommeijer B (2002) How do sinking phytoplankton species manage to persist? Am Nat 159:245–254

    Article  PubMed  Google Scholar 

  • Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH et al (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970

    Article  Google Scholar 

  • Huppert A, Blasius B, Stone L (2002) A model of phytoplankton blooms. Am Nat 159:156–171

    Article  PubMed  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Working group I contribution to the fourth assessment report of the IPCC. Intergovernmental Panel of Climate Change, Cambridge University Press, New York

  • Ives AR (1995) Predicting the response of populations to environmental change. Ecology 76:926–941

    Article  Google Scholar 

  • Jackson LJ, Lauridsen TL, Sondergaard M, Jeppesen E (2007) A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshw Biol 52:1782–1792

    Article  CAS  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Sondergaard M, Hansen KM, Andersen HE et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1930–1941

    Article  PubMed  CAS  Google Scholar 

  • Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ et al (2010) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646:73–90

    Article  CAS  Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14:495–512

    Article  Google Scholar 

  • Johnson AC, Acreman MC, Dunbar MJ, Feist SW, Giacomello AM, Gozian RE et al (2009) The British river of the future: how climate change and human activity might affect two contrasting river ecosystems in England. Sci Total Environ 407:4787–4798

    Article  PubMed  CAS  Google Scholar 

  • Jones ID, Page T, Elliott JA, Thackeray SJ, Heathwaite AL (2011) Increases in lake phytoplankton biomass caused by future climate-driven changes to seasonal river flow. Glob Chang Biol 17:1809–1820

    Article  Google Scholar 

  • King JR, Shuter BJ, Zimmerman AP (1997) The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Can J Fish Aquat Sci 54:1873–1882

    Google Scholar 

  • Komatsu E, Fukushima T, Harasawa H (2007) A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol Modell 209:351–366

    Article  Google Scholar 

  • Krivtsov V, Goldspink C, Sigee DC, Bellinger EG (2001) Expansion of the model “Rostherne” for fish and zooplankton: role of top-down effects in modifying the prevailing pattern of ecosystem functioning. Ecol Modell 138:153–171

    Article  CAS  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B et al (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 173–210

  • Lampert W (2006) Daphnia: model, herbivore, predator and prey. Pol J Ecol 54:607–620

    Google Scholar 

  • Lampert W (2011) Daphnia: development of a model organism in ecology and evolution. In: Kinne O (ed) Excellence in ecology, vol 21. International Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  • Lampert W, Fleckner W, Rai H, Taylor BE (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol Oceanogr 31:478–490

    Article  Google Scholar 

  • Leech DM, Williamson CE (2000) Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecol Appl 10:1530–1540

    Article  Google Scholar 

  • Leech DM, Padeletti A, Williamson CE (2005) Zooplankton behavioral responses to solar UV radiation vary within and among lakes. J Plankton Res 27:461–471

    Article  CAS  Google Scholar 

  • Lennon JT, Smith VH, Williams K (2001) Influence of temperature on exotic Daphnia lumholtzi and implications for invasion success. J Plankton Res 23:425–434

    Article  Google Scholar 

  • Leu E, Faerovig PJ, Hessen DO (2006) UV effects on stoichiometry and PUFAs of Selenastrum capricornutum and their consequences for the grazer Daphnia magna. Freshw Biol 51:2296–2308

    Article  CAS  Google Scholar 

  • Livingstone DM (2003) Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Chang 57:205–225

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid, and crysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J Paleolimnol 18:395–420

    Article  Google Scholar 

  • Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T et al (2000) Historical trends in lake and river ice cover in the northern hemisphere. Science 289:1743–1746

    Article  PubMed  CAS  Google Scholar 

  • Malmaeus JM, Håkanson L (2004) Development of a lake eutrophication model. Ecol Modell 171:35–63

    Article  CAS  Google Scholar 

  • Manca M, DeMott WR (2009) Response of the invertebrate predator Bythotrephes to a climate-linked increase in the duration of a refuge from fish predation. Limnol Oceanogr 54:2506–2512

    Article  Google Scholar 

  • Manca M, Portogallo M, Brown ME (2007) Shifts in phenology of Bythotrephes longimanus and its modern success in Lake Maggiore as a result of changes in climate and trophy. J Plankton Res 29:515–525

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Matulla C, Schmutz S, Melcher A, Gerersdorfer T, Haas P (2007) Assessing the impact of a downscaled climate change simulation on the fish fauna in an Inner-Alpine River. Int J Biometeorol 52:127–137

    Article  PubMed  CAS  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  PubMed  CAS  Google Scholar 

  • McCann KS, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Article  CAS  Google Scholar 

  • McGowan S, Leavitt PR, Hall RI (2005) A whole-lake experiment to determine the effects of winter droughts on shallow lakes. Ecosystems 8:694–708

    Article  CAS  Google Scholar 

  • McKee D, Ebert D (1996) The effect of temperature on maturation threshold body-length in Daphnia magna. Oecologia 108:627–630

    Article  Google Scholar 

  • McKee D, Atkinson D, Collings S, Eaton J, Harvey I, Heyes T et al (2002) Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshw Biol 47:1557–1570

    Article  Google Scholar 

  • Mehner T (2000) Influence of spring warming on the predation rate of underyearling fish on Daphnia—a deterministic simulation approach. Freshw Biol 45:253–263

    Article  Google Scholar 

  • Mitchell SE, Rogers ES, Little TJ, Read AF (2005) Host-parasite and genotype-by-environment interactions: temperature modifies potential for selection by a sterilizing pathogen. Evolution 59:70–80

    PubMed  Google Scholar 

  • Molinero JC, Anneville O, Souissi S, Balvay G, Gerdeaux D (2006) Anthropogenic and climate forcing on the long-term changes of planktonic rotifers in Lake Geneva, Europe. J Plankton Res 28:287–296

    Article  CAS  Google Scholar 

  • Mooij WM, Hülsmann S, De Senerpont Domis LN, Nolet BA, Bodelier PLE, Boers PCM et al (2005) The impact of climate change on lakes in The Netherlands: a review. Aquat Ecol 39:381–400

    Article  CAS  Google Scholar 

  • Mooij WM, Janse JH, De Senerpont Domis LN, Hülsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454

    Article  CAS  Google Scholar 

  • Moore MV, Folt CL (1993) Zooplankton body size and community structure: effects of thermal and toxicant stress. Trends Ecol Evol 8:178–183

    Article  PubMed  CAS  Google Scholar 

  • Moore MV, Folt CL, Stemberger RS (1996) Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Arch Hydrobiol 135:289–319

    Google Scholar 

  • Moss B, McKee D, Atkinson D, Collings SE, Eaton JW, Gill AB et al (2003) How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J Appl Ecol 40:782–792

    Article  Google Scholar 

  • Norberg J, DeAngelis D (1997) Temperature effects on stocks and stability of a phytoplankton–zooplankton model and the dependence on light and nutrients. Ecol Modell 95:75–86

    Article  Google Scholar 

  • Omlin M, Brun R, Reichert P (2001) Biogeochemical model of Lake Zurich: sensitivity, identifiability and uncertainty analysis. Ecol Modell 141:105–123

    Article  CAS  Google Scholar 

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14

    Article  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    Article  CAS  Google Scholar 

  • Park S, Brett MT, Müller-Solger A, Goldman CR (2004) Climatic forcing and primary productivity in a subalpine lake: interannual variability as a natural experiment. Limnol Oceanogr 49:614–619

    Article  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13:1860–1872

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Paul VJ (2008) Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Advances in experimental medicine and biology, vol 619. Springer, Berlin, pp 239–257

  • Peeters F, Straile D, Lorke A, Livingstone DM (2007a) Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob Chang Biol 13:1898–1909

    Article  Google Scholar 

  • Peeters F, Straile D, Lorke A, Ollinger D (2007b) Turbulent mixing and phytoplankton spring bloom development in a deep lake. Limnol Oceanogr 52:286–298

    Article  Google Scholar 

  • Perkins DM, Reiss J, Yvon-Durocher G, Woodward G (2010) Global change and food webs in running waters. Hydrobiologia 657:181–198

    Article  Google Scholar 

  • Persaud AD, Williamson CE (2005) Ultraviolet and temperature effects on planktonic rotifers and crustaceans in northern temperate lakes. Freshw Biol 50:467–476

    Article  Google Scholar 

  • Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Article  CAS  Google Scholar 

  • Phlips EJ, Hendrickson J, Quinlan EL, Cichra M (2007) Meteorological influences on algal bloom potential in a nutrient-rich blackwater river. Freshw Biol 52:2141–2155

    Article  CAS  Google Scholar 

  • Poff NL (2002) Ecological response to and management of increased flooding caused by climate change. Philos Trans R Soc A 360:1497–1510

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD et al (1997) The natural flow regime. Bioscience 47:769–784

    Article  Google Scholar 

  • Porter KG, McDonough R (1984) The energetic cost of response to blue-green algal filaments by cladocerans. Limnol Oceanogr 29:365–369

    Article  Google Scholar 

  • Preston ND, Rusak JA (2010) Homage to Hutchinson: does inter-annual climate variability affect zooplankton density and diversity? Hydrobiologia 653:165–177

    Article  CAS  Google Scholar 

  • Quiel K, Becker A, Kirchesch V, Schöl A, Fischer H (2011) Influence of global change on phytoplankton and nutrient cycling in the Elbe River. Reg Environ Chang 11:405–421

    Article  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Article  PubMed  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Article  Google Scholar 

  • Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N Z J Mar Freshw Res 21:391–399

    Article  CAS  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds A (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Rusak JA, Yan ND, Somers KM (2008) Regional climatic drivers of synchronous zooplankton dynamics in north-temperate lakes. Can J Fish Aquat Sci 65:878–889

    Article  Google Scholar 

  • Sala OE, Ill FSC, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Sarma SSS, Nandini S, Gulati RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542:315–333

    Article  Google Scholar 

  • Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. Am Nat 163:429–441

    Article  PubMed  Google Scholar 

  • Schalau K, Rinke K, Straile D, Peeters F (2008) Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study. Oecologia 157:531–543

    Article  PubMed  Google Scholar 

  • Scheffer M, Van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466

    Article  CAS  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  PubMed  CAS  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  PubMed  CAS  Google Scholar 

  • Schindler DW (1997) Widespread effects of climate warming on freshwater ecosystems in North America. Hydrol Process 11:1043–1067

    Article  Google Scholar 

  • Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54:2349–2358

    Article  CAS  Google Scholar 

  • Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank DR, Fee EJ et al (1996) The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr 41:1004–1017

    Article  CAS  Google Scholar 

  • Schindler DE, Rogers DE, Scheuerell MD, Abrey CA (2005) Effects of changing climate on zooplankton and juvenile sockeye salmon growth in southwestern Alaska. Ecology 86:198–209

    Article  Google Scholar 

  • Scott JD, Chalker-Scott L, Foreman AE, D’Angelo M (1999) Daphnia pulex fed UVB-irradiated Chlamydomonas reinhardtii show decreased survival and fecundity. Photochem Photobiol 70:308–313

    CAS  Google Scholar 

  • Shatwell T, Köhler J, Nicklisch A (2008) Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Glob Chang Biol 14:2194–2200

    Article  Google Scholar 

  • Shindell DT, Rind D, Lonergan P (1998) Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392:589–592

    Article  CAS  Google Scholar 

  • Shurin JB, Winder M, Adrian R, Keller WB, Matthews B, Paterson AM et al (2010) Environmental stability and lake zooplankton diversity—contrasting effects of chemical and thermal variability. Ecol Lett 13:453–463

    Article  PubMed  Google Scholar 

  • Sinha RP, Klisch M, Gröniger A, Häder DP (1998) Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J Photochem Photobiol B 47:83–94

    Article  CAS  Google Scholar 

  • Sipkay C, Horváth L, Nosek J, Oertel N, Vadadi-Fülöp C, Farkas E et al (2008) Analysis of climate change scenarios based on modelling of the seasonal dynamics of a Danubian copepod species. Appl Ecol Environ Res 6:101–108

    Google Scholar 

  • Sipkay C, Kiss KT, Vadadi-Fülöp C, Hufnagel L (2009) Trends in research on the possible effects of climate change concerning aquatic ecosystems with special emphasis on the modelling approach. Appl Ecol Environ Res 7:171–198

    Google Scholar 

  • Sipkay C, Kiss KT, Vadadi-Fülöp C, Homoródi R, Hufnagel L (2012) Simulation modeling of phytoplankton dynamics in a large eutrophic river, Hungary—Danubian Phytoplankton Growth Model DPGM. Biologia 67:323–337

    Article  Google Scholar 

  • Spencer C, King D (1987) Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, carbon dioxide and trophic level interactions. Hydrobiologia 144:183–192

    Article  Google Scholar 

  • Stelzer CP (2002) Phenotypic plasticity of body size at different temperatures in a planktonic rotifer: mechanisms and adaptive significance. Funct Ecol 16:835–841

    Article  Google Scholar 

  • Stemberger RS, Herlihy AT, Kugler DL, Paulsen SG (1996) Climatic forcing on zooplankton richness in lakes of the northeastern United States. Limnol Oceanogr 41:1093–1101

    Article  Google Scholar 

  • Stenseth NC, Mysterud A (2005) Weather packages: finding the right scale and composition of climate in ecology. J Anim Ecol 74:1195–1198

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Storz UC, Paul RJ (1998) Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light? J Comp Physiol A 183:709–717

    Article  Google Scholar 

  • Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Article  Google Scholar 

  • Straile D (2002) North Atlantic Oscillation synchronizes food-web interactions in central European Lakes. Proc R Soc B 269:391–395

    Article  PubMed  Google Scholar 

  • Straile D, Geller W (1998) The response of Daphnia to changes in trophic status and weather patterns: a case study from Lake Constance. ICES J Mar Sci 55:775–782

    Article  Google Scholar 

  • Straile D, Müller H (2010) Response of Bosmina to climate variability and reduced nutrient loading in a large lake. Limnologica 40:92–96

    Article  CAS  Google Scholar 

  • Straile D, Stenseth NC (2007) The North Atlantic Oscillation and ecology: links between historical time-series, and lessons regarding future climate warming. Clim Res 34:259–262

    Article  Google Scholar 

  • Strecker AL, Cobb TP, Vinebrooke RD (2004) Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnol Oceanogr 49:1182–1190

    Article  CAS  Google Scholar 

  • Strecker AL, Arnott SE, Yan ND, Girard R (2006) Variation in the response of crustacean zooplankton species richness and composition to the invasive predator Bythotrephes longimanus. Can J Fish Aquat Sci 63:2126–2136

    Article  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16:3304–3313

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  PubMed  Google Scholar 

  • Vadadi-Fülöp C, Türei D, Sipkay C, Verasztó C, Drégelyi-Kiss Á, Hufnagel L (2009) Comparative assessment of climate change scenarios based on aquatic food web modeling. Environ Model Assess 14:563–576

    Article  Google Scholar 

  • Visconti A, Manca M, De Bernardi R (2008) Eutrophication-like response to climate warming: an analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J Limnol 67:87–92

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc B 272:2561–2569

    Article  PubMed  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16

    Google Scholar 

  • Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468

    Article  Google Scholar 

  • Wagner A, Benndorf J (2007) Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia 151:351–364

    Article  PubMed  Google Scholar 

  • Walther GR, Post E, Convey P, Menzei A, Parmesan C, Beebee TJC et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8:2–8

    Article  Google Scholar 

  • Webster JC, Peters RH (1978) Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol Oceanogr 23:1238–1244

    Article  Google Scholar 

  • Weetman D, Atkinson D (2004) Evaluation of alternative hypotheses to explain temperature-induced life history shifts in Daphnia. J Plankton Res 26:107–116

    Article  Google Scholar 

  • Williamson CE (1995) What role does UV-B radiation play in freshwater ecosystems? Limnol Oceanogr 40:386–392

    Article  Google Scholar 

  • Williamson CE, Rose KC (2010) When UV meets fresh water. Science 329:637–639

    Article  PubMed  CAS  Google Scholar 

  • Williamson CE, Zagarese HE, Schulze PC, Hargreaves BR, Seva J (1994) The impact of short-term exposure to UV-B radiation on zooplankton communities in north temperate lakes. J Plankton Res 16:205–218

    Article  Google Scholar 

  • Williamson CE, Stemberger RS, Morris DP, Frost TM, Paulsen SG (1996) Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol Oceanogr 41:1024–1034

    Article  CAS  Google Scholar 

  • Williamson CE, Hargreaves BR, Orr PS, Lovera PA (1999) Does UV play a role in changes in predation and zooplankton community structure in acidified lakes? Limnol Oceanogr 44:774–783

    Article  CAS  Google Scholar 

  • Williamson CE, De Lange HJ, Leech DM (2007) Do zooplankton contribute to an ultraviolet clear-water phase in lakes? Limnol Oceanogr 52:662–667

    Article  CAS  Google Scholar 

  • Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254

    Article  Google Scholar 

  • Williamson CE, Salm C, Cooke SL, Saros JE (2010) How do UV radiation, temperature, and zooplankton influence the dynamics of alpine phytoplankton communities? Hydrobiologia 648:73–81

    Article  Google Scholar 

  • Williamson CE, Fischer JM, Bollens SM, Overholt EP, Breckenridge JK (2011) Toward a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol Oceanogr 56:1603–1623

    Article  Google Scholar 

  • Wilson AE, Sarnelle O, Tillmanns AR (2006) Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol Oceanogr 51:1915–1924

    Article  Google Scholar 

  • Winder M, Hunter DA (2008) Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156:179–192

    Article  PubMed  Google Scholar 

  • Winder M, Schindler DE (2004a) Climatic effects on the phenology of lake processes. Glob Chang Biol 10:1844–1856

    Article  Google Scholar 

  • Winder M, Schindler DE (2004b) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106

    Article  Google Scholar 

  • Winder M, Schindler DE, Essington TE, Litt AH (2009) Disrupted seasonal clockwork in the population dynamics of a freshwater copepod by climate warming. Limnol Oceanogr 54:2493–2505

    Article  Google Scholar 

  • Work K, Gophen M (1999) Environmental variability and the population dynamics of the exotic Daphnia lumholtzi and native zooplankton in Lake Texoma, U.S.A. Hydrobiologia 405:11–23

    Article  CAS  Google Scholar 

  • Wrona FJ, Prowse TD, Reist JD, Hobbie JE, Lévesque LMJ, Vincent WF (2006) Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35:359–369

    Article  PubMed  CAS  Google Scholar 

  • Xenopoulos MA, Frost PC, Elser JJ (2002) Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83:423–435

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Yan ND, Blukacz A, Sprules WG, Kindy PK, Hackett D, Girard RE et al (2001) Changes in zooplankton and the phenology of the spiny water flea, Bythotrephes, following its invasion of Harp Lake, Ontario, Canada. Can J Fish Aquat Sci 58:2341–2350

    Article  Google Scholar 

  • Yoo JC, D’Odorico P (2002) Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: the effect of the North Atlantic Oscillation. J Hydrol 268:100–112

    Article  Google Scholar 

  • Zagarese HE, Williamson CE, Mislivets M, Orr P (1994) The vulnerability of Daphnia to UV-B radiation in the northeastern United States. Adv Limnol 43:207–216

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences, “ALÖKI” Applied Ecological Research and Forensic Institute Ltd., and the TÁMOP 4.2.1/B-09/1/KMR-2010-0005 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Vadadi-Fülöp.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadadi-Fülöp, C., Sipkay, C., Mészáros, G. et al. Climate change and freshwater zooplankton: what does it boil down to?. Aquat Ecol 46, 501–519 (2012). https://doi.org/10.1007/s10452-012-9418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-012-9418-8

Keywords

Navigation