Skip to main content
Log in

Further improvements in water quality of the Dutch Borderlakes: two types of clear states at different nutrient levels

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The Borderlakes are a chain of ten shallow, largely artificial, interconnected lakes in the Netherlands. The ecological recovery of the central Borderlakes (viz. lake Veluwe and Wolderwijd) has been well documented. These lakes shifted from a eutrophic, Planktothrix dominated state in the 1970s to a clear state in 1996. Around 2010, the formerly hypertrophic, southern Borderlake Eem also reached a clear state, but at considerably higher nutrient levels. In this paper, monitoring data are used to compare these changes and identify the differences in driving processes and their consequences. The 1996 shift in Lake Veluwe was linked to increased fishery for benthivorous Bream, followed and stabilized by increase in Zebra Mussels and charophytes. Nutrients in Lake Eem decreased as well and Planktothrix disappeared here too in 1996, despite relatively high TP concentrations which remained stable over time. The start of the change into the clear state in this case also involved a decrease in the Bream population, but with a stronger additional role for dreissenids, particularly of Quagga Mussels. Remaining blooms of cyanobacteria almost disappeared, but the current situation in Lake Eem represents a different type of clear water state than in the central Borderlakes. This type is characterized by the combination of a relatively high phosphorus load, intense dreissenid filtration and filamentous macro-algae instead of either blooms of cyanobacteria or dominance of charophytes. With the dominant role of the River Eem, the relatively short residence time and increasing difficulty to bring down nutrient loading any further, the stability of this clear state depends on high densities (and filtration rates) of dreissenids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alheit J, Möllman C, Dutz J, Kornilovs G, Loewe P, Mohrholz V, Wasmund N (2005) Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. J Mar Sci 62:1205–1215

    Google Scholar 

  • Auer MT, Tomlinson LM, Higgins SN, Malkin SY, Howell ET, Bootsma HA (2010) Great Lakes Cladophora in the 21st century: same algae, different ecosystem. J Great Lakes Res 36:248–255

    Article  Google Scholar 

  • Baldwin BS, Mayer MS, Dayton J, Pau N, Mendilla J, Sullivan M, Moore A, Ma A, Mills EL (2002) Comparative growth and feeding in zebra and quagga mussels (Dreissena polymorpha and Dreissena bugensis): implications for North American lakes. Can J Fish Aquat Sci 59:680–694

    Article  Google Scholar 

  • Barbiero RP, Tuchman ML (2004) Long-term dreissenid impacts on water clarity in Lake Erie. J Great Lakes Res 30:557–565

    Article  Google Scholar 

  • Bially A, MacIsaac HJ (2000) Fouling mussels (Dreissena spp.) colonize soft sediments in Lake Erie and facilitate benthic invertebrates. Freshw Biol 43:85–97

    Article  Google Scholar 

  • Bootsma HA, Liao Q (2014) Nutrient cycling by Dreissenid mussels. Controlling factors and ecosystem response. In: Nalepa TF, Schloesser DW (eds) Quagga and Zebra. Mussels biology, impacts and control. CRC Press, Boca Raton, pp 555–574

    Google Scholar 

  • Canale RP, Auer MT (1982) Ecological studies and mathematical modelling of Cladophora in Lake Huron: 5. Model development and calibration. J Great Lakes Res 8:112–125

    Article  CAS  Google Scholar 

  • Dionisio Pires LM, Bontes BM, Van Donk E, Ibelings BW (2005a) Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. J Plankton Res 27:331–339

    Article  Google Scholar 

  • Dionisio Pires LM, Ibelings BW, Brehm M, Van Donk E (2005b) Comparing grazing on lake seston by Dreissena and Daphnia: lessons from biomanipulation. Microb Ecol 50:242–252

    Article  CAS  PubMed  Google Scholar 

  • Fahnenstiel G, Nalepa T, Pothoven S, Carrick H, Scavia D (2010a) Lake Michigan lower food web: long-term observations and Dreissena impact. J Great Lakes Res 36(suppl. 3):1–4

    Article  Google Scholar 

  • Fahnenstiel G, Pothoven S, Vanderploeg H, Klarer D, Nalepa T, Scavia D (2010b) Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. J Great Lakes Res 36:20

    Article  Google Scholar 

  • Fishman DB, Adlerstein SA, Vanderploeg HA, Fahnenstiel GL, Scavia D (2010) Phytoplankton community composition of Saginaw Bay, Lake Huron, during the zebra mussel (Dreissena polymorpha) invasion: a multivariate analysis. J Great Lakes Res 36:9–19

    Article  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Gulati RD, Dionisio Pires LM, van Donk E (2008) Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica 38:233–247

    Article  CAS  Google Scholar 

  • Haynes JM, Stewart TW, Cook GE (1999) Benthic macroinvertebrate communities in south western Lake Ontario following invasion of Dreissena: continuing change. J Great Lakes Res 25(25):828–838

    Article  Google Scholar 

  • Higgins SN (2014) Meta-analysis of dreissenid effects on freshwater ecosystems. In: Nalepa TF, Schloesser DW (eds) Quagga and Zebra. Mussels biology, impacts and control. CRC Press, Boca Raton, pp 487–494

    Google Scholar 

  • Higgins SN, Malkin SY, Howel ET et al (2008) An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes. J Phycol 44:839–854

    Article  PubMed  Google Scholar 

  • Hosper SH (1984) Restoration of Lake Veluwe, The Netherlands, by reduction of phosphorus loading and flushing. Water Sci Technol 17:757–768

    Google Scholar 

  • Hosper SH (1997) Clearing lakes: an ecosystem approach to the restoration and management of shallow lakes in the Netherlands. Dissertation, Wageningen University, the Netherlands

  • Hosper SH, Meijer M-L (1986) Control of phosphorus loading and flushing as restoration methods for lake Veluwe, the Netherlands. Hydrobiol Bull 20:183–194

    Article  CAS  Google Scholar 

  • Ibelings BW, Portielje R, Lammens EHRR, Noordhuis R, Van den Berg MS, Joosse W, Meijer M-L (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: lake Veluwe as a case study. Ecosystems 10:4–16

    Article  CAS  Google Scholar 

  • IJnsen F (1981) Onderzoek naar het optreden van winterweer in Nederland. KNMI, De Bilt

    Google Scholar 

  • Jackson LJ, Søndergaard M, Lauridsen TL, Jeppesen E (2007) A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshw Biol 52:1782–1792

    Article  CAS  Google Scholar 

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Comptes Rendus Geosci 340:621–628

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Kristensen P, Søndergaard M, Mortensen E, Sortkjær O, Olrik K (1990) Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200(201):219–228

    Article  Google Scholar 

  • Jeppesen E, Meerhoff M, Jacobsen B et al (2007) Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia 581:252–269

    Article  Google Scholar 

  • Jeppesen E, Hehner T, Winvield IJ et al (2012) Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694:1–39

    Article  CAS  Google Scholar 

  • Karatayev AY, Burlakova LW, Padilla DK (2002) Impacts of zebra mussels on aquatic communities and their roll as ecosystem engineers. In: Leppakoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer Academic, Dordrecht, pp 433–446

    Chapter  Google Scholar 

  • Koeman RPT (1997) Soortensamenstelling van draadalgen in zoete rijkswateren, 1996. Koeman en Bijkerk bv, Haren

    Google Scholar 

  • Kolodziejczyk A (1989) Malacofauna in isolated and interconnected lakes. Arch Hydrobiol 114:431–441

    Google Scholar 

  • Kosten S, Kamarainen A, Jeppesen E, Van Nes EH, Peeters EHM, Mazzeo N, Sass L, Hauxwell J, Hansel-Welch N, Lauridsen TL, Søndergaard M, Bachmann RW, Lacerot G, Scheffer M (2009) Climate-related differences in the dominance of submerged macrophytes in shallow lakes. Glob Change Biol 15:2503–2517

    Article  Google Scholar 

  • Lammens EHRR, Van Nes EH, Meijer ML, Van den Berg MS (2004) Effects of commercial fishery on the bream population and the expansion of Chara aspera in Lake Veluwe. Ecol Model 177:233–244

    Article  Google Scholar 

  • Makarewicz JC, Lewis TW, Bertram P (1999) Phytoplankton composition and biomass in the offshore waters of Lake Erie: pre and post-Dreissena introduction (1983–1993). J Great Lakes Res 25:135–148

    Article  Google Scholar 

  • Mandemakers J (2013) The impact of suspended sediments and phosphorus scarcity on zebra mussel and quagga mussel growth. Master’s thesis, Utrecht University, the Netherlands

  • Martel A, Mathieu AF, Findlay CS, Nepszy SJ, Leach JH (1994) Daily settlement rates of the zebra mussel, Dreissena polymorpha, on an artificial substrate correlate with veliger abundance. Can J Fish Aquat Sci 51:851–861

    Article  Google Scholar 

  • Mayer AL, Rietkerk M (2004) The dynamic regime concept for ecosystem management and restoration. Bioscience 54:1013–1020

    Article  Google Scholar 

  • Mayer CM, Burlakova LE, Eklöv P, Fitzgerald D, Karatayev AY, Ludsin SA, Millard S, Mills EL, Ostapenya AP, Rudstam LG, Zhu B, Zhukova TV (2014) Benthification of freshwater lakes. Exotic mussels turning ecosystems upside down. In: Nalepa TF, Schloesser DW (eds) Quagga and Zebra. Mussels biology, impacts and control. CRC Press, Boca Raton, pp 575–585

    Google Scholar 

  • Meijer M-L (2000) Biomanipulation in the Netherlands—15 years of experience. Dissertation, Wageningen University, the Netherlands

  • Meijer M-L, Hosper H (1995) Actief Biologisch beheer in het Wolderwijd-Nuldernauw: evaluatie en aanbevelingen voor het beheer. Rijkswaterstaat, Lelystad

    Google Scholar 

  • Meijer M-L, Hosper H (1996) Actief Biologisch beheer in het Wolderwijd-Nuldernauw leidt tot een toename van kranswieren. H2O 18:536–538

    Google Scholar 

  • Mooij WM, Hülsmann S, de Senerpont Domis LN, Nolet BA, Bodelier PLE, Boers PCM, Dionisio Pires ML, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHRR (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400

    Article  CAS  Google Scholar 

  • Moss B (1990) Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201):367–378

    Article  Google Scholar 

  • Nicholls KH, Hoyle JA, Jonansson OE, Dermott R (2011) A biological regime shift in the Bay of Quinte ecosystem (Lake Ontario) associated with the establishment of invasive dreissenid mussels. J Great Lakes Res 37(2):310–317

    Article  Google Scholar 

  • Noordhuis R (2010) Ecosysteem IJsselmeergebied: nog altijd in ontwikkeling. Trends en ontwikkelingen in water en natuur van het Natte Hart van Nederland. Rijkswaterstaat, Lelystad

    Google Scholar 

  • Noordhuis R, Reeders HH, Marteijn ECL (1994) Inzet van driehoeksmosselen bij biologisch waterbeheer; resultaten van veldexperimenten. H2O 27(6):150–160

    Google Scholar 

  • Ozersky T, Malkin SY, Barton DR, Hecky RE (2009) Dreissenid phosphorus excretion can sustain C. glomerata growth along a portion of Lake Ontario shoreline. J Great Lakes Res 35:321–328

    Article  CAS  Google Scholar 

  • Peterson BJ, Heck KL Jr (2001) Positive interactions between suspension-feeding bivalves and seagrass—a facultative mutualism. Mar Ecol Prog Ser 213:143–155

    Article  Google Scholar 

  • Pfister CA (2007) Intertidal invertebrates locally enhance primary production. Ecology 88:1647–1653

    Article  PubMed  Google Scholar 

  • Pot R (2010) Toestand en trends in de waterkwaliteit van Nederlandse meren en plassen. Resultaten van de vijfde eutrofiëringsenquête in opdracht vande werkgroep Routekaart Heldere Meren. Roelf Pot Onderzoek- en Adviesbureau voor Water- en Oevervegetatiebeheer, Oosterhesselen, the Netherlands

  • Raikow DF, Sarnelle O, Wilson WE, Hamilton SK (2004) Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels. Limnol Oceanogr 49:482–487

    Article  Google Scholar 

  • Reeders HH, Bij de Vaate A (1990) Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200(201):437–450

    Article  Google Scholar 

  • Reeders HH, Bij de Vaate A, Noordhuis R (1993) Potential of the Zebra Mussel (Dreissena polymorpha) for water quality management. In: Nalepa TF, Schloesser DW (eds) Zebra Mussels, biology, impacts, and control. Lewis, Boca Raton, pp 439–452

    Google Scholar 

  • Scheffer M (1998) Ecology of Shallow Lakes. Chapman and Hall, London

    Google Scholar 

  • Scheffer M (2009) Critical transitions in nature and society. Princeton University Press, Oxford

    Google Scholar 

  • Scheffer M, Carpenter S (2003) Catastrophic regime shifts in ecosystem: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Skubinna JP, Coon TG, Batterson TR (1995) Increased abundance and depth of submersed macrophytes in response to decreased turbidity in Saginaw Bay, Lake Huron. J Great Lakes Res 21:476–488

    Article  Google Scholar 

  • Stancykowska A (1964) On the relationship between abundance aggregations and condition of Dreissena polymorpha (Pall.) in 36 Masurian lakes. Ekol Pol A 12:653–690

    Google Scholar 

  • Ten Winkel EH, Meulemans JT (1984) Effects of cyprinid fish on submerged vegetation. Hydrobiol Bul 18:157–158

    Article  Google Scholar 

  • Vanderploeg HA, Liebig JR, Carmichael WW, Agy MA, Johengen TH, Fahnenstiel GL, Nalepa TF (2001) Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can J Fish Aquat Sci 58:1208–1221

    Article  CAS  Google Scholar 

  • Vanderploeg HA, Wilson AE, Johengen TH, Dyble Bressie J, Sarnelle O, Liebig JR, Robinson SD, Horst GP (2014) Role of selective grazing by dreissenid mussels in promoting toxic Microcystis blooms and other changes in phytoplankton composition in the Great Lakes. In: Nalepa TF, Schloesser DW (eds) Quagga and Zebra. Mussels biology, impacts and control. CRC Press, Boca Raton, pp 509–523

    Google Scholar 

  • Zambrano L, Scheffer M, Martinez-Ramos M (2001) Catastrophic response of lakes to benthivorous fish introduction. Oikos 94:344–350

    Article  Google Scholar 

Download references

Acknowledgments

Most of the data used in the paper were derived from the monitoring programmes of Rijkswaterstaat, the agency of the Dutch Ministry of Infrastructure and the Environment responsible for the main water systems, which also supported much of the research financially. Surveys of dreissenids were largely carried out and reported by Bureau Waardenburg bv, Culemborg. We thank Dr. Harry Hosper, Dr. Eddy Lammens, Ir. Simon Groot and Dr. Ellis Penning for their comments on earlier versions of the manuscript.

Conflict of interest

Ruurd Noordhuis, Bastiaan van Zuidam, Edwin Peeters and Gerben van Geest declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruurd Noordhuis.

Additional information

Guest editors: Petra M. Visser, Bas W. Ibelings, Jutta Fastner & Myriam Bormans / Cyanobacterial blooms. Ecology, prevention, mitigation and control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noordhuis, R., van Zuidam, B.G., Peeters, E.T.H.M. et al. Further improvements in water quality of the Dutch Borderlakes: two types of clear states at different nutrient levels. Aquat Ecol 50, 521–539 (2016). https://doi.org/10.1007/s10452-015-9521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-015-9521-8

Keywords

Navigation