Skip to main content
Log in

Effects of wind speed and direction on monthly fluctuations of Cladosporium conidia concentration in the air

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

This study determined the relationship between airborne concentration of Cladosporium spp. spores and wind speed and direction using real data (local wind measured by weather station) and modelled data (air mass flow computed with the aid of HYbrid Single Particle Lagrangian Trajectory model). Air samples containing fungal conidia were taken at an urban site (Worcester, UK) for a period of five consecutive years using a spore trap of the Hirst design. A threshold of ≥6000 s m−3 (double the clinical value) was applied in order to select high spore concentration days, when airborne transport of conidia at a regional scale was more likely to occur. Collected data were then examined using geospatial and statistical tools, including circular statistics. Obtained results showed that the greatest numbers of spore concentrations were detected in July and August, when C. herbarum, C. cladosporioides and C. macrocarpum sporulate. The circular correlation test was found to be more sensitive than Spearman’s rank test. The dominance of either local wind or the air mass on Cladosporium spore distributions varied between examined months. Source areas of this pathogen had an origin within the UK territory. Very high daily mean concentrations of Cladosporium spores were observed when daily mean local wind speed was v s ≤ 2.5 m s−1 indicating warm days with a light breeze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus Cladosporium. Studies in Mycology, 72, 1–401.

    Article  CAS  Google Scholar 

  • Bouziane, H., Latge, J. P., Fitting, C., Mecheri, S., Lelong, M., & David, B. (2005). Comparison of the allergenic potency of spores and mycelium of Cladosporium. Allergologia et Immunopathologia, 33, 125–130.

    Article  CAS  Google Scholar 

  • Bouziane, H., Latge, J. P., & Lelong, M. (2006). Immunochemical comparison of the allergenic potency of spores and mycelium of C. cladosporioides extracts by a nitrocellulose electroblotting technique. Allergologia et Immunopathologia, 34, 64–69.

    Article  CAS  Google Scholar 

  • CALPUFF Modeling System (1990) atmospheric studies group (ASG), http://www.src.com/calpuff/calpuff1.htm. Accessed March 3, 2017.

  • Calvo Torras, M. A., Guarro Artigas, J., & Suarez Fernandez, G. (1981). Air-borne fungi in the air of Barcelona (Spain). 4. Mycopathologia, 74, 19–24.

    Article  Google Scholar 

  • Díez Herrero, A., Sabariego Ruiz, S., Gutíerrez Bustillo, M., & Cervigón Morales, P. (2006). Study of airborne fungal spores in Madrid, Spain. Aerobiologia, 22, 135–142.

    Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2014) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA Air Resources Laboratory. http://ready.arl.noaa.gov/HYSPLIT.php.

  • Ellis, M. B. (1971). Dematiaceous hyphomycetes. London: The Eastern Press Ltd.

    Google Scholar 

  • Erkara, I. P., Ilhan, S., & Oner, S. (2009). Monitoring and assessment of airborne Cladosporium Link and Alternaria Nees spores in Sivrihisar (Eskisehir), Turkey. Environmental Monitoring and Assessment, 48, 477–484.

    Article  Google Scholar 

  • Fernández-Rodríguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C. A., Maya-Manzano, J. M., et al. (2015). Potential sources of airborne Alternaria spp. spores in south-west Spain. Science of the Total Environment, 533, 165–176.

    Article  Google Scholar 

  • Frankland, A. W., & Davies, R. R. (1965). Allergy to mold spores in England. Poumon et la Coeur, 21, 11–31.

    CAS  Google Scholar 

  • Fulton, J. D. (1966). Microorganisms in the upper atmosphere. 3. Relationship between altitude and micropopulation. Journal of Applied Microbiology, 14, 237–240.

    CAS  Google Scholar 

  • Green, B. J., Mitakakis, T. Z., & Tovey, E. R. (2003). Allergen detection from 11 fungal species before and after germination. Journal of Allergy and Clinical Immunology, 11, 285–289.

    Article  Google Scholar 

  • Grinn-Gofroń, A. (2008). The variation in spore concentrations of selected fungal taxa associated with weather conditions in Szczecin, Poland, 2004–2006. Grana, 47, 139–146.

    Article  Google Scholar 

  • Grinn-Gofroń, A. (2009). The occurrence of Cladosporium spores in the air and their relationships with meteorological parameters. Acta Agrobotanica, 62, 111–116.

    Article  Google Scholar 

  • Grinn-Gofroń, A., Sadyś, M., Kaczmarek, J., Bednarz, A., Pawłowska, S., & Jedryczka, M. (2016). Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses. Science of the Total Environment, 571, 658–669.

    Article  Google Scholar 

  • Harvey, R. (1967). Air-spora studies at cardiff. Transactions of the British Mycological Society, 50, 479–480.

    Article  Google Scholar 

  • Harvey, R. (1970). Spore productivity in Cladosporium. Mycopathologia et Mycologia Applicata, 41, 251–256.

    Article  Google Scholar 

  • Heinzerling, L., Frew, A. J., Bindslev-Jensen, C., Bonini, S., Bousquet, J., Bresciani, M., et al. (2005). Standard skin prick testing and sensitization to inhalant allergens across Europe—A survey from the GALEN network. Allergy, 60, 1287–1300.

    Article  CAS  Google Scholar 

  • Hernández-Ceballos, M. A., Skjøth, C. A., García-Mozo, H., Bolívar, J. P., & Galán, C. (2014). Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula. International Journal of Biometeorology, 58, 2031–2043.

    Article  Google Scholar 

  • Herrero, B., & Zaldivar, P. (1997). Effects of meteorological factors on the levels of Alternaria and Cladosporium spores in the atmosphere of Palencia, 1990–1992. Grana, 36, 180–184.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hirst, J. M. (1973). Spore transport and vertical profiles (Vol. 18). Bulletins from the Ecological Research Committee.

  • Hirst, J. M., Stedman, O. J., & Hurst, G. W. (1967). Long-distance spore transport—Vertical sections of spore clouds over sea. Microbiology, 48, 357–358.

    CAS  Google Scholar 

  • Hjelmroos, M. (1993). Relationship between airborne fungal spore presence and weather variables—Cladosporium and Alternaria. Grana, 32, 40–47.

    Article  Google Scholar 

  • Hyde, H. A., Richards, M., & Williams, D. A. (1956). Allergy to mould spores in Britain. British Medical Journal, 1, 886–890.

    Article  CAS  Google Scholar 

  • Isard, S. A., Gage, S. H., Comtois, P., & Russo, J. M. (2005). Principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience, 55, 851–861.

    Article  Google Scholar 

  • Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in poland. Aerobiologia, 22, 169–176.

    Article  Google Scholar 

  • Katial, R. K., Zhang, Y. M., Jones, R. H., & Dyer, P. D. (1997). Atmospheric mold spore counts in relation to meteorological parameters. International Journal of Biometeorology, 41, 17–22.

    Article  CAS  Google Scholar 

  • Kurkela, T. (1997). The number of Cladosporium conidia in the air in different weather conditions. Grana, 36, 54–61.

    Article  Google Scholar 

  • Lacey, J. (1981). The aerobiology of conidial fungi. In G. T. Cole (Ed.), Biology of conidial fungi (pp. 373–416). New York: Academic Press.

    Chapter  Google Scholar 

  • Lacey, M. E., & West, J. S. (2006). Air spora: A manual for catching and identifying airborne biological particles. Berlin: Springer.

    Book  Google Scholar 

  • Maya-Manzano, J. M., Sadyś, M., Tormo-Molina, R., Fernández-Rodríguez, S., Oteros, J., Silva-Palacios, I., et al. (2017). Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Science of the Total Environment, 584–585, 603–613.

    Article  Google Scholar 

  • Mediavilla Molina, A., Angulo Romero, J., García-Pantaleón, F. I., Comtois, P., & Domínguez Vilches, E. (1998). Preliminary statistical modelling of the presence of two conidial types of Cladosporium in the atmosphere of Córdoba, Spain. Aerobiologia, 14, 229–234.

    Article  Google Scholar 

  • Mitakakis, T. Z., Kok Ong, E., Stevens, A., Guest, D., & Knox, R. B. (1997). Incidence of Cladosporium, Alternaria and total fungal spores in the atmosphere of Melbourne (Australia) over three years. Aerobiologia, 13, 83–90.

    Article  Google Scholar 

  • Morrow Brown, H., & Jackson, F. A. (1978a). Aerobiological studies based in Derby. 2. Simultaneous pollen and spore sampling at eight sites within a 60 km radius. Clinical Allergy, 8, 599–609.

    Article  Google Scholar 

  • Morrow Brown, H., & Jackson, F. A. (1978b). Aerobiological studies based in Derby. 3. Comparison of simultaneous pollen and spore counts from East coast, Midlands and West coast of England and Wales. Clinical Allergy, 8, 611–619.

    Article  Google Scholar 

  • Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24, 69–71.

    CAS  Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009a). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. International Journal of Biometeorology, 53, 61–73.

    Article  CAS  Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009b). Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia, 25, 85–98.

    Article  Google Scholar 

  • Ranta, H., & Pessi, A.-M. (2006). Pollen bulletin summary 2005. The Finnish Pollen Bulletin, 30, 1–12.

    Google Scholar 

  • Rapiejko, P., Lipiec, A., Wojadas, A., & Jurkiewicz, D. (2004). Threshold pollen concentration necessary to evoke allergic symptoms. International Review of Allergology and Clinical Immunology, 10, 91–94.

    Google Scholar 

  • Recio, M., del Mar Trigo, M., Docampo, S., Melgar, M., Garcia-Sanchez, J., Bootello, L., et al. (2012). Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: Alternaria and Cladosporium. International Journal of Biometeorology, 56, 983–991.

    Article  Google Scholar 

  • Reynolds, A. M., Bohan, D. A., & Bell, J. R. (2007). Ballooning dispersal in arthropod taxa: conditions at take-off. Biology Letters, 3, 237–240.

    Article  Google Scholar 

  • Rodríguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109, 497–507.

    Article  Google Scholar 

  • Rolph, G. D. (2014) Real-time Environmental Applications and Display sYstem (READY). NOAA Air Resources Laboratory. http://ready.arl.noaa.gov.

  • Sadyś, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2016). Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia, 32, 619–634.

    Article  Google Scholar 

  • Sadyś, M., Kennedy, R., & Skjøth, C. A. (2015a). Determination of Alternaria spp. habitats using 7-day volumetric spore trap, Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information system. Urban Climate, 14, 429–440.

    Article  Google Scholar 

  • Sadyś, M., Kennedy, R., & Skjøth, C. A. (2015b). An analysis of local wind and air mass directions and their impact on Cladosporium distribution using HYSPLIT and circular statistics. Fungal Ecology, 18, 56–66.

    Article  Google Scholar 

  • Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015c). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59, 25–36.

    Article  Google Scholar 

  • Sánchez Reyes, E., Rodríguez de la Cruz, D., Sanchís Merino, M. E., & Sánchez, J. (2009). Meteorological and agricultural effects on airborne Alternaria and Cladosporium spores and clinical aspects in Valladolid (Spain). Annals of Agricultural and Environmental Medicine, 16, 53–61.

    Google Scholar 

  • Skjøth, C. A., Sommer, J., Frederiksen, L., & Karlson, U. G. (2012). Crop harvest in Denmark and central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12, 11107–11123.

    Article  Google Scholar 

  • Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J., et al. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microbial Ecology, 64, 973–985.

    Article  CAS  Google Scholar 

  • Sofiev, M., & Siljamo, P. (2004). Forward and inverse simulations with Finnish emergency model SILAM. In C. Borrego & S. Incecik (Eds.), Air pollution modelling and its applications (pp. 417–425). New York: Springer.

    Chapter  Google Scholar 

  • Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., & Kukkonen, J. (2006). A dispersion modelling system SILAM and its evaluation against ETEX data. Atmospheric Environment, 40, 674–685.

    Article  CAS  Google Scholar 

  • Stępalska, D., & Wołek, J. (2005). Variation in fungal spore concentrations of selected taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia, 21, 43–52.

    Article  Google Scholar 

  • Troutt, C., & Levetin, E. (2001). Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45, 64–74.

    Article  CAS  Google Scholar 

  • Wu, P. C., Tsai, J. C., Li, F. C., Lung, S. C., & Su, H. J. (2004). Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmospheric Environment, 38, 4879–4886.

    Article  CAS  Google Scholar 

  • Zureik, M., Neukirch, C., Leynaert, B., Liard, R., Bousquet, J., & Neukirch, F. (2002). Sensitisation to airborne moulds and severity of asthma: cross sectional study from European community respiratory health survey. BMJ, 325, 1–7.

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the University of Worcester and conducted within the framework of the doctoral studies. The author would like to thank Dr. Andrew M. Reynolds (Rothamsted Research) for a critical evaluation of the manuscript. Subsequently, thanks go to Dr. Carsten Ambelas Skjøth (University of Worcester) for producing Fig. 2 used in this study. Finally, the author would like to acknowledge the NOAA ARL for the provision of the HYSPLIT model used in this publication as well as access to input data (GDAS archive) for running the HYSPLIT model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sadyś.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadyś, M. Effects of wind speed and direction on monthly fluctuations of Cladosporium conidia concentration in the air. Aerobiologia 33, 445–456 (2017). https://doi.org/10.1007/s10453-017-9482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-017-9482-6

Keywords

Navigation