Skip to main content
Log in

Conformally Kähler, Einstein–Maxwell metrics on Hirzebruch surfaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this note, we prove that a special family of Killing potentials on certain Hirzebruch complex surfaces, found by Futaki and Ono [18], gives rise to new conformally Kähler, Einstein–Maxwell metrics. The correspondent Kähler metrics are ambitoric [7, 9] but they are not given by the Calabi ansatz [31]. This answers in positive questions raised in [18, 19].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9, 641–651 (1998)

    Article  Google Scholar 

  2. Abreu, M.: Kähler metrics on toric orbifolds. J. Differ. Geom. 58, 151–187 (2001)

    Article  Google Scholar 

  3. Apostolov, V.: The Kähler geometry of toric manifolds, 2019 (last visited 14 September 2020). Lecture notes available at http://www.cirget.uqam.ca/~apostolo/papers/toric-lecture-notes.pdf

  4. Apostolov, V., Calderbank, D.M.J.: The CR geometry of weighted extremal Kähler and Sasaki metrics. Mathematische Annalen (2020)

  5. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Hamiltonian 2-forms in Kähler geometry. I. General theory. J. Differ. Geom. 73, 359–412 (2006)

    Article  Google Scholar 

  6. Apostolov, V., Calderbank, D. M. J., and Gauduchon, P.: Ambitoric geometry II: Extremal toric surfaces and Einstein 4-orbifolds. In Annales Scientifiques de l’École Normale Supérieure, vol. 48, Societe Mathematique de France, pp. 1075–1112 (2015)

  7. Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Ambitoric geometry I: Einstein metrics and extremal ambiKähler structures. Journal für die reine und angewandte Mathematik (Crelles Journal) 2016, 109–147 (2016)

    Article  Google Scholar 

  8. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry. II. Global classification. J. Differ. Geom. 68, 277–345 (2004)

    Article  Google Scholar 

  9. Apostolov, V., Maschler, G.: Conformally Kähler, Einstein–Maxwell geometry. J. Eur. Math. Soc. 21, 1319–1360 (2019)

    Article  MathSciNet  Google Scholar 

  10. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982)

    Article  MathSciNet  Google Scholar 

  11. Boyer, C.P., Galicki, K., Simanca, S.R.: The Sasaki cone and extremal Sasakian metrics. In: Galicki, K., Simanca, S.R. (eds.) Riemannian Topology and Geometric Structures on Manifolds, pp. 263–290. Progress in Mathematics. Birkhäuser, Boston, MA (2009)

    Chapter  Google Scholar 

  12. Calabi, E.: Extremal Kähler metrics. Semin. Differ. Geom. 102, 259–290 (1982)

    MATH  Google Scholar 

  13. Calabi, E.: Differential geometry and complex analysis. Extremal Kähler Metrics II, pp. 95–114. Springer, Berlin (1985)

    MATH  Google Scholar 

  14. Debever, R., Kamran, N., McLenaghan, R.G.: Exhaustive integration and a single expression for the general solution of the type D vacuum and electrovac field equations with cosmological constant for a nonsingular aligned Maxwell field. J. Math. Phys. 25, 1955–1972 (1984)

    Article  MathSciNet  Google Scholar 

  15. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bulletin de la Société Mathématique de France 116, 315–339 (1988)

    Article  MathSciNet  Google Scholar 

  16. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    Article  MathSciNet  Google Scholar 

  17. Donaldson, S.K.: Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19, 83–136 (2009)

    Article  MathSciNet  Google Scholar 

  18. Futaki, A., Ono, H.: Volume minimization and conformally Kähler, Einstein–Maxwell geometry. J. Math. Soc. Jpn. 70, 1493–1521 (2018)

    Article  Google Scholar 

  19. Futaki, A., Ono, H.: Conformally Einstein–Maxwell Kähler metrics and structure of the automorphism group. Mathematische Zeitschrift 292, 571–589 (2019)

    Article  MathSciNet  Google Scholar 

  20. Futaki, A., and Ono, H.: On the existence problem of Einstein–Maxwell Kähler metrics. In: Chen, J., Lu, P., Lu, Z. and Zhang, Z. (eds.) Geometric Analysis vol. 333 of Progress in Mathematics. Birkhäuser, pp. 93–111 (2020)

  21. Gauduchon, P.: Calabi’s extremal Kähler metrics. Lecture Notes

  22. Gauduchon, P.: Hirzebruch surfaces and weighted projective planes. Riemannian Topology and Geometric Structures on Manifolds, pp. 25–48. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Guillemin, V.: Kaehler structures on toric varieties. J. Differ. Geom. 40, 285–309 (1994)

    Article  MathSciNet  Google Scholar 

  24. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Inventiones Mathematicae 67, 491–513 (1982)

    Article  MathSciNet  Google Scholar 

  25. Koca, C., Tønnesen-Friedman, C.W.: Strongly Hermitian Einstein–Maxwell solutions on ruled surfaces. Ann. Glob. Anal. Geom. 50, 29–46 (2016)

    Article  MathSciNet  Google Scholar 

  26. Lahdili, A.: Automorphisms and deformations of conformally Kähler, Einstein–Maxwell metrics. J. Geom. Anal. 29, 542–568 (2019)

    Article  MathSciNet  Google Scholar 

  27. Lahdili, A.: Kähler metrics with constant weighted scalar curvature and weighted \(K\)-stability. Proc. Lond. Math. Soc. 119, 1065–1114 (2019)

    Article  MathSciNet  Google Scholar 

  28. LeBrun, C.: Einstein metrics, four-manifolds, and conformally Kähler geometry. Surv. Differ. Geom. 13, 135–148 (2008)

    Article  Google Scholar 

  29. LeBrun, C.: On Einstein, Hermitian 4-manifolds. J. Differ. Geom. 90, 277–302 (2012)

    Article  MathSciNet  Google Scholar 

  30. LeBrun, C.: The Einstein–Maxwell equations, Kähler metrics, and Hermitian geometry. J. Geom. Phys. 91, 163–171 (2015)

    Article  MathSciNet  Google Scholar 

  31. LeBrun, C.: The Einstein–Maxwell equations and conformally Kähler geometry. Commun. Math. Phys. 344, 621–653 (2016)

    Article  Google Scholar 

  32. Legendre, E.: Existence and non-uniqueness of constant scalar curvature toric Sasaki metrics. Compositio Mathematica 147, 1613–1634 (2011)

    Article  MathSciNet  Google Scholar 

  33. Legendre, E.: Toric geometry of convex quadrilaterals. J. Symplectic Geom. 9, 343–385 (2011)

    Article  MathSciNet  Google Scholar 

  34. Plebanski, J.F., Demianski, M.: Rotating, charged, and uniformly accelerating mass in general relativity. Ann. Phys. 98, 98–127 (1976)

    Article  MathSciNet  Google Scholar 

  35. Zhou, B., Zhu, X.: \(K\)-stability on toric manifolds. Proc. Am. Math. Soc. 136, 3301–3307 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is part of the author’s Ph.D. thesis. The author would like to thank his thesis supervisor Vestislav Apostolov for his invaluable advice and for sharing his insights with him. The author is also grateful to Eveline Legendre, who kindly shared with him her observations used in the proof of Theorem 6.4. He would also like to thank Abdellah Lahdili and Lars Martin Sektnan for enlightening discussions, the Federal University of Ouro Preto and Université du Québec à Montréal for their financial support, and the referee for his careful reading and suggestions that greatly improved the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaque Viza de Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viza de Souza, I. Conformally Kähler, Einstein–Maxwell metrics on Hirzebruch surfaces. Ann Glob Anal Geom 59, 263–284 (2021). https://doi.org/10.1007/s10455-020-09749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-020-09749-y

Keywords

Navigation