Skip to main content
Log in

Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

New capillaries are formed through angiogenesis and an integral step in this process is endothelial tubulogenesis. The molecular mechanisms driving tube formation during angiogenesis are not yet delineated. Recently, the chloride intracellular channel 4 (CLIC4)-orthologue EXC-4 was found to be necessary for proper development and maintenance of the Caenorhabditis elegans excretory canal, implicating CLIC4 as a regulator of tubulogenesis. Here, we studied the role of CLIC4 in angiogenesis and endothelial tubulogenesis. We report the effects of inhibiting or inducing CLIC4 expression on distinct aspects of endothelial cell behavior in vitro. Our experiments utilized RNA interference to establish cultured human endothelial cell lines with significant reduction of CLIC4 expression, and a CLIC4-expressing lentiviral plasmid was used to establish CLIC4 overexpression in endothelial cells. We observed no effect on cell migration and a modest effect on cell survival. Reduced CLIC4 expression decreased cell proliferation, capillary network formation, capillary-like sprouting, and lumen formation. This suggests that normal endogenous CLIC4 expression is required for angiogenesis and tubulogenesis. Accordingly, increased CLIC4 expression promoted proliferation, network formation, capillary-like sprouting, and lumen formation. We conclude that CLIC4 functions to promote endothelial cell proliferation and to regulate endothelial morphogenesis, and is thus involved in multiple steps of in vitro angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674. doi:10.1038/386671a0

    Article  PubMed  CAS  Google Scholar 

  2. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456. doi:10.1038/nature04923

    Article  PubMed  CAS  Google Scholar 

  3. Hogan BL, Kolodziej PA (2002) Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet 3:513–523. doi:10.1038/nrg840

    Article  PubMed  CAS  Google Scholar 

  4. Berry KL, Bulow HE, Hall DH, Hobert O (2003) A C. elegans CLIC-like protein required for intracellular tube formation and maintenance. Science 302:2134–2137. doi:10.1126/science.1087667

    Article  PubMed  CAS  Google Scholar 

  5. Ulmasov B, Bruno J, Woost PG, Edwards JC (2007) Tissue and subcellular distribution of CLIC1. BMC Cell Biol 8:8. doi:10.1186/1471-2121-8-8

    Article  PubMed  Google Scholar 

  6. Ashley RH (2003) Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins. Mol Membr Biol 20:1–11. doi:10.1080/09687680210042746 Review

    Article  PubMed  CAS  Google Scholar 

  7. Littler DR, Harrop SJ, Brown LJ, Pankhurst GJ, Mynott AV, Luciani P, Mandyam RA, Mazzanti M, Tanda S, Berryman MA, Breit SN, Curmi PM (2008) Comparison of vertebrate and invertebrate CLIC proteins: the crystal structures of Caenorhabditis elegans EXC-4 and Drosophila melanogaster DmCLIC. Proteins 71:364–378. doi:10.1002/prot.21704

    Article  PubMed  CAS  Google Scholar 

  8. Money TT, King RG, Wong MH, Stevenson JL, Kalionis B, Erwich JJ, Huisman MA, Timmer A, Hiden U, Desoye G, Gude NM (2007) Expression and cellular localisation of chloride intracellular channel 3 in human placenta and fetal membranes. Placenta 28:429–436. doi:10.1016/j.placenta.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  9. Bohman S, Matsumoto T, Suh K, Dimberg A, Jakobsson L, Yuspa S, Claesson-Welsh L (2005) Proteomic analysis of vascular endothelial growth factor-induced endothelial cell differentiation reveals a role for chloride intracellular channel 4 (CLIC4) in tubular morphogenesis. J Biol Chem 280:42397–42404. doi:10.1074/jbc.M506724200

    Article  PubMed  CAS  Google Scholar 

  10. Suginta W, Karoulias N, Aitken A, Ashley RH (2001) Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem J 359:55–64. doi:10.1042/0264-6021:3590055

    Article  PubMed  CAS  Google Scholar 

  11. Berryman MA, Goldenring JR (2003) CLIC4 is enriched at cell–cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton 56:159–172. doi:10.1002/cm.10141

    Article  PubMed  CAS  Google Scholar 

  12. Boerma M, Burton GR, Wang J, Fink LM, McGehee RE Jr, Hauer-Jensen M (2006) Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition. Blood Coagul Fibrinolysis 17:173–180. doi:10.1097/01.mbc.0000220237.99843.a1

    Article  PubMed  CAS  Google Scholar 

  13. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756. doi:10.1172/JCI107470

    Article  PubMed  CAS  Google Scholar 

  14. Berryman M, Bretscher A (2000) Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol Biol Cell 11:1509–1521

    PubMed  CAS  Google Scholar 

  15. Funahashi Y, Sugi NH, Semba T, Yamamoto Y, Hamaoka S, Tsukahara-Tamai N, Ozawa Y, Tsuruoka A, Nara K, Takahashi K, Okabe T, Kamata J, Owa T, Ueda N, Haneda T, Yonaga M, Yoshimatsu K, Wakabayashi T (2002) Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2 subunit on endothelium. Cancer Res 62:6116–6123

    PubMed  CAS  Google Scholar 

  16. Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Perez-del-Pulgar S, Carpenter PM, Hughes CC (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res 66:102–112. doi:10.1016/S0026-2862(03)00045-1

    Article  PubMed  CAS  Google Scholar 

  17. Singh H, Cousin MA, Ashley RH (2007) Functional reconstitution of mammalian ‘chloride intracellular channels’ CLIC1, CLIC4 and CLIC5 reveals differential regulation by cytoskeletal actin. FEBS J 274:6306–6316

    PubMed  CAS  Google Scholar 

  18. Ronnov-Jessen L, Villadsen R, Edwards JC, Petersen OW (2002) Differential expression of a chloride intracellular channel gene, CLIC4, in transforming growth factor-beta1-mediated conversion of fibroblasts to myofibroblasts. Am J Pathol 161:471–480

    PubMed  CAS  Google Scholar 

  19. Suh KS, Mutoh M, Gerdes M, Crutchley JM, Mutoh T, Edwards LE, Dumont RA, Sodha P, Cheng C, Glick A, Yuspa SH (2005) Antisense suppression of the chloride intracellular channel family induces apoptosis, enhances tumor necrosis factor {alpha}-induced apoptosis, and inhibits tumor growth. Cancer Res 65:562–571

    PubMed  CAS  Google Scholar 

  20. Suh KS, Mutoh M, Gerdes M, Yuspa SH (2005) CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. J Investig Dermatol Symp Proc 10:105–109. doi:10.1111/j.1087-0024.2005.200402.x

    Article  PubMed  CAS  Google Scholar 

  21. Nakatsu MN, Hughes CC (2008) An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82. doi:10.1016/S0076-6879(08)02004-1

    Article  PubMed  CAS  Google Scholar 

  22. Jentsch TJ, Maritzen T, Zdebik AA (2005) Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest 115:2039–2046. doi:10.1172/JCI25470

    Article  PubMed  CAS  Google Scholar 

  23. Berry KL, Hobert O (2006) Mapping functional domains of chloride intracellular channel (CLIC) proteins in vivo. J Mol Biol 359:1316–1333. doi:10.1016/j.jmb.2006.04.046

    Article  PubMed  CAS  Google Scholar 

  24. Suh KS, Mutoh M, Nagashima K, Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG, Dumont RA, Levy JM, Cheng C, Garfield S, Yuspa SH (2004) The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem 279:4632–4641. doi:10.1074/jbc.M311632200

    Article  PubMed  CAS  Google Scholar 

  25. Fernandez-Salas E, Suh KS, Speransky VV, Bowers WL, Levy JM, Adams T, Pathak KR, Edwards LE, Hayes DD, Cheng C, Steven AC, Weinberg WC, Yuspa SH (2002) mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol Cell Biol 22:3610–3620. doi:10.1128/MCB.22.11.3610-3620.2002

    Article  PubMed  CAS  Google Scholar 

  26. Proutski I, Karoulias N, Ashley RH (2002) Overexpressed chloride intracellular channel protein CLIC4 (p64H1) is an essential component of novel plasma membrane anion channels. Biochem Biophys Res Commun 297:317–322. doi:10.1016/S0006-291X(02)02199-X

    Article  PubMed  CAS  Google Scholar 

  27. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103. doi:10.1038/nrm729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martin Nakatsu and Christopher Hughes for assistance with the capillary sprouting assay, and Christine Yoon for technical assistance. We also thank Claire Reeves and Joseph Dufraine for guidance in this study. This work was supported in part by a NIH RO1 HL62454 (J.K.). O.H. is an Investigator of the Howard Hughes Medical Institute (O.H.). J.T. was supported by NIH training grants, NIH T32 EY13933 and NIH T32 GM008224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kitajewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, J.J., Hobert, O., Berryman, M. et al. Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis 12, 209–220 (2009). https://doi.org/10.1007/s10456-009-9139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9139-3

Keywords

Navigation