Skip to main content
Log in

An extracellular proteasome releases endostatin from human collagen XVIII

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Endostatin is a potent anti-angiogenic and anti-tumor protein capable of regressing tumors without inducing acquired resistance. Since it is a fragment of the parental molecule, collagen XVIII, its endogenous production depends on the activity of a specific proteolytic enzyme. While such an enzyme has been described in mice, a human counterpart has not been identified so far. Here, we searched for this enzyme by using a fluorescence resonance energy transfer peptide containing the cleavage site of human collagen XVIII. We found that the cleavage activity was present in various murine and human tumor cells but not in untransformed cells. It was ascribed to a large protein complex identified as an extracellular form of proteasome 20S. Since circulating proteasome 20S has recently emerged as an important marker of tumor progression, the possibility of proteasomes controlling the production of angiostatic endostatin may inspire the development of new anticancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  2. Boehm T, Folkman J, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    Article  CAS  PubMed  Google Scholar 

  3. Oh SP, Kamagata Y, Muragaki Y, Timmons S, Ooshima A, Olsen BR (1994) Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc Natl Acad Sci USA 91:4229–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rehn M, Pihlajaniemi T (1994) Alpha 1 (XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct distribution, and homology with type XV collagen. Proc Natl Acad Sci USA 91:4234–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seppinen L, Pihlajaniemi T (2011) The multiple functions of collagen XVIII in development and disease. Matrix Biol 30:83–92

    Article  CAS  PubMed  Google Scholar 

  6. Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T (1998) The short and long forms of type XVIII collagen show clear tissue specificities in their expressions and location in basement membrane zones in humans. Am J Pathol 153:611–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schuppan D, Cramer T, Bauer M, Strefeld T, Hahn EG, Herbst H (1998) Hepatocytes as a source of collagen type XVIII endostatin. Lancet 352:879–880

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki OT, Sertié AL, Der Kaloustian VM, Kok F, Carpenter M, Murray J, Czeizel AE, Kliemann SE, Rosemberg S, Monteiro M, Olsen BR, Passos-Bueno MR (2002) Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am J Hum Genet 71:1320–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J (1999) The generation of endostatin is mediated by elastase. Cancer Res 59:6052–6056

    CAS  PubMed  Google Scholar 

  10. Felbor U, Dreier L, Bryant RA, Plogh HL, Olsen BR, Mothes W (2000) Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19:1187–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaissé J (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486:247–251

    Article  CAS  PubMed  Google Scholar 

  12. Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkilä P, Rehn M, Sorsa T, Salo T, Pihlajaniemi T (2005) Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307:292–304

    Article  CAS  PubMed  Google Scholar 

  13. Veillard F, Saidi A, Burden RE, Scott CJ, Gillet L, Lecaille F, Lalmanach G (2011) Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin. J Biol Chem 286:37158–37167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bohem T, O’Reilly MS, Keough K, Shiloach J, Shapiro R, Folkman J (1998) Zinc-binding of endostatin is essential for its antiangiogenic activity. Biochem Biophys Res Commun 252:190–194

    Article  Google Scholar 

  15. Sjin RMTT, Satchi-Fainaro R, Birsner AE, Ramanujam VM, Folkman J, Javaherian K (2005) A 27-amino-acid synthetic peptide corresponding to the NH2-terminal zinc-binding domain of endostatin is responsible for its antitumor activity. Cancer Res 65:3656–3663

    Article  CAS  Google Scholar 

  16. Ding YH, Javaherian K, Lo KM, Chopra R, Boehm T, Lanciotti J, Harris BA, Li H, Shapiro R, Hohenester E, Timpl R, Folkman J, Wiley DC (1998) Zinc-dependent dimers observed in crystals of human. Proc Natl Acad Sci USA 95:10443–10448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu Y, Luo Y (2010) The N-terminal integrity is critical for the stability and biological functions of endostatin. Biochemistry 49:6420–6429

    Article  CAS  PubMed  Google Scholar 

  18. Ständker L, Schrader M, Kanse SM, Jürgens M, Forssmann WG, Preissner KT (1997) Isolation and characterization of the circulating form of human endostatin. FEBS Lett 420:129–133

    Article  PubMed  Google Scholar 

  19. Hasle H, Clemmensen IH, Mikkelsen M (2000) Incidence of cancer in individuals with Down syndrome. Tidsskr Norske Laege 120:2878–2881

    CAS  Google Scholar 

  20. Zorick TS, Mustacchi Z, Bando SY, Zatz M, Moreira-Filho CA, Olsen B, Passos-Bueno MR (2001) High serum endostatin levels in Down syndrome: implications for improved treatment and prevention of solid tumors. Eur J Hum Genet 9:811–814

    Article  CAS  PubMed  Google Scholar 

  21. Iughetti P, Suzuki O, Godoi PH, Alves VA, Sertié AL, Zorick T, Soares F, Camargo A, Moreira ES, di Loreto C, Moreira-Filho CA, Simpson A, Oliva G, Passos-Bueno (2001) A polymorphism in endostatin, an angiogenesis inhibitor, predisposes for the development of prostatic adenocarcinoma. Cancer Res 61:7375–7378

    CAS  PubMed  Google Scholar 

  22. Chen J, Hamm LL, Kleinpeter MA, Husserl F, Khan IE, Chen CS, Liu Y, Mills KT, He C, Rifai N, Simon EE, He J (2012) Elevated plasma levels of endostatin are associated with chronic kidney disease. Am J Nephrol 35:335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feldman AL, Alexander HR Jr, Yang JC, Linehan WM, Eyler RA, Miller MS, Steinberg SM, Libutti SK (2002) Prospective analysis of circulating endostatin levels in patients with renal cell carcinoma. Cancer 95:1637–1643

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh MY, Lin ZY, Chuang WL (2011) Serial serum VEGF-A, angiopoietin-2, and endostatin measurements in cirrhotic patients with hepatocellular carcinoma treated by transcatheter arterial chemoembolization. Kaohsiung J Med Sci 27:314–322

    Article  CAS  PubMed  Google Scholar 

  25. Hu MM, Hu Y, Zhang HQ, Jia WY, Qian Z, Yang Y, Li BL (2014) Clinical significance of serum and tumor tissue endostatin evaluation in operable non-small cell lung cancer. Biomed Rep 2:898–904

    PubMed  PubMed Central  Google Scholar 

  26. Susuki M, Iizasa T, Ko E, Baba M, Saitoh Y, Shibuya K, Sekine Y, Yoshida S, Hiroshima K, Fujisawa T (2002) Serum endostatin correlates with progression and prognosis of non-small cell lung cancer. Lung Cancer 35:29–34

    Article  Google Scholar 

  27. Hirata IY, Cezari MHS, Nakaie CR, Boschcov P, Ito AS, Juliano MA, Juliano L (1994) Internally quenched fluorogenic protease substrates: solid-phase synthesis and fluorescence spectroscopy of peptides containing ortho-aminobenzoyl/dinitrophenyl groups as donor-acceptor pairs. Lett Peptide Sci 1:299–308

    Article  Google Scholar 

  28. Von Krüger WM, Lery LM, Soares MR, de Neves-Manta FS, Batista e Silva CM, Neves-Ferreira AG, Perales J, Bisch PM (2006) The phosphate-starvation response in Vibrio cholerae O1 and phoB mutant under proteomic analysis: disclosing functions involved in adaptation, survival and virulence. Proteomics 6:1495–1511

    Article  Google Scholar 

  29. Lee MC, Alpaugh ML, Nguyen M, Deato M, Dishakjian L, Barsky SH (2000) Myoepithelial-specific CD44 shedding is mediated by a putative chymotrypsin-like sheddase. Biochem Biophys Res Commun 279:116–123

    Article  CAS  PubMed  Google Scholar 

  30. Navom A, Ciechanover A (2009) The 26 S proteasome: from basic mechanism to drug targeting. J Biol Chem 284:33713–33718

    Article  Google Scholar 

  31. Vaithilingam IS, McDonald W, Malott DW, Del Maestro RF (1995) An extracellular proteasome-like structure from C6 astrocytoma cells with serine collagenase IV activity and metallo-dependent activity on alpha-casein and beta-insulin. J Biol Chem 270:4588–4593

    Article  CAS  PubMed  Google Scholar 

  32. Rivett AJ, Palmer A, Knecht E (1992) Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in culture cells. J Histochem Cytochem 40:1165–1172

    Article  CAS  PubMed  Google Scholar 

  33. Sixt SU, Dahlmann B (2008) Extracellular, circulating proteasomes and ubiquitin - incidence and relevance. Biochim Biophys Acta 1782:817–823

    Article  CAS  PubMed  Google Scholar 

  34. Stoebner PE, Lavabre-Bertrand T, Henry L, Guiraud I, Carillo S, Dandurand M, Joujoux JM, Bureau JP, Meunier L (2005) High plasma proteasome levels are detected in patients with metastatic malignant melanoma. Br J Dermatol 152:948–953

    Article  CAS  PubMed  Google Scholar 

  35. Lavabre-Bertrand T, Henry L, Carillo S, Guiraud I, Ouali A, Dutaud D, Aubry L, Rossi JF, Bureau JP (2001) Plasma proteasome level is a potential marker in patients with solid tumors and hemopoietic malignancies. Cancer 15:2493–2500

    Article  Google Scholar 

  36. Dutaud D, Aubry L, Henry L, Levieux D, Hendil KB, Kuehn L, Bureau JP, Ouali A (2002) Development and evaluation of a sandwich ELISA for quantification of the 20S proteasome in human plasma. J Immunol Methods 1:183–193

    Article  Google Scholar 

  37. Wada M, Kosaka M, Saito S, Sano T, Tanaka K, Ichihara A (1993) Serum concentration and localization in tumor cells of proteasomes in patients with hematologic malignancy and their pathophysiologic significance. J Lab Clin Med 121:215–223

    CAS  PubMed  Google Scholar 

  38. Sixt SU, Beiderlinden M, Jennissen HP, Peters J (2007) Extracellular proteasome in the human alveolar space: a new housekeeping enzyme? Am J Physiol Lung Cell Mol Physiol 292:1280–1288

    Article  Google Scholar 

  39. Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Döner T, Burmester GR, Kloetzel PM, Feist E (2002) Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J Rheumatol 29:2045–2052

    CAS  PubMed  Google Scholar 

  40. Roth GA, Moser B, Krenn C, Roth-Walter F, Hetz H, Richter S, Brunner M, Jensen-Jarolim E, Wolner E, Hoetzenecker K, Boltz-Nitulescu G, Ankersmit HJ (2005) Heightened levels of circulating 20S proteasome in critically ill patients. Eur J Clin Investig 35:399–403

    Article  CAS  Google Scholar 

  41. Dziankowska-Bartkowiak B, Waszczykowska E, Dziankowska-Zaboroszczyk E, de Graft-Johnson JE, Zalewska A, Luczynska M, Novak D (2006) Decreased ratio of circulatory vascular endothelial growth factor to endostatin in patients with systemic sclerosis—association with pulmonary involvement. Clin Exp Rheumatol 24:508–513

    CAS  PubMed  Google Scholar 

  42. Sumi M, Satoh H, Kagohashi K, Ishikawa H, Sekizawa K (2005) Increased serum levels of endostatin in patients with idiopathic pulmonary fibrosis. J Clin Lab Anal 19:146–149

    Article  CAS  PubMed  Google Scholar 

  43. Bochmann I, Ebstein F, Lehmann A, Wohlschlaeger J, Sixt SU, Kloetzel PM, Dahlmann B (2014) T lymphocytes export proteasomes by way of microparticles: a possible mechanism for generation of extracellular proteasomes. J Cell Mol Med 18:59–68

    Article  CAS  PubMed  Google Scholar 

  44. Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteom 2012:971907

    Article  Google Scholar 

  45. Zhu Y, Chen X, Pan Q, Wang Y, Su S, Jiang C, Li Y, Xu N, Wu L, Lou X, Liu S (2015) A comprehensive proteomics analysis reveals a secretory path- and status- dependent signature of exosomes released from tumor-associated macrophages. J Proteom Res 14:4319–4331

    Article  CAS  Google Scholar 

  46. Vadas P, Pruzanski W, Stefanski E, Ellies LG, Aubin JE, Sos A, Melcher A (1991) Extracellular phospholipase A2 secretion is a common effector pathway of interleukin-1 and tumor necrosis factor action. Immunol Lett 28:187–193

    Article  CAS  PubMed  Google Scholar 

  47. Lin MK, Farewell V, Vadas P, Bookmann AA, Keystone EC, Pruzanski W (1996) Secretory phospholipase A2 as an index of disease activity in rheumatoid arthritis. Prospective double blind study of 212 patients. J Rheumatol 23:1162–1166

    CAS  PubMed  Google Scholar 

  48. Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Lösche W, Kinscherf R, Deigner HP (2005) Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J 19:1719–1721

    CAS  PubMed  Google Scholar 

  49. Doehner W, Bunck AC, Rauchhaus M, von Haehling S, Brunkhorst FM, Cicoira M, Tschope C, Ponikowski P, Claus RA, Anker SD (2007) Secretory sphingomyelinase is upregulated in chronic heart failure: a second messenger system of immune activation relates to body composition, muscular functional capacity, and peripheral blood flow. Eur Heart J 28:821–828

    Article  CAS  PubMed  Google Scholar 

  50. Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Willams KJ, Tabas I (1998) Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 273:4081–4088

    Article  CAS  PubMed  Google Scholar 

  51. Morales P, Pizarro E, Kong M, Jara M (2004) Extracellular localization of proteasomes in human sperm. Mol Reprod Dev 68:115–124

    Article  CAS  PubMed  Google Scholar 

  52. Sutovsky P, Manandhar G, McCauley TC, Caamaño JN, Sutovsky M, Thompson WE (2004) Proteasomel interference prevents zona pellucida penetration and fertilization in mammals. Biol Reprod 71:1625–1637

    Article  CAS  PubMed  Google Scholar 

  53. Wojcik C, Benchaib M, Lornage J, Czyba JC, Guerin JF (2000) Proteasomes in human spermatozoa. Int J Androl 23:169–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Marilene Demasi and Dr. Claudio Masuda for helpful discussions and for the donation of reagents. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Project—12/50191-4R), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Projects—471340/2011-1 and 470388/2010-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Coelho-Sampaio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

A protease isolated from human glioblastoma produces endostatin in cultures of human umbilical vein endothelial cells. A protein fraction was isolated from a primary culture of human glioblastoma exactly as done to produce F6 out of EOMA (see Materials and Methods). Such fraction (100 μl) was incubated with a confluent culture of HUVEC in a six-well plate (9.6 cm2) for 2 h at 37°C in growth medium (199 plus 20% FBS). Culture supernatant was analyzed in SDS-PAGE 12% followed by western blot using a polyclonal anti-endostatin antibody (Millipore, AB1878). A band of 20 kDa was detected, whereas such band was strongly reduced when the experiment was carried out in the presence of 10 μM AEBSF. (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiss-Pistilli, M.L.V., Schuppan, D., Barroso, M.M.S. et al. An extracellular proteasome releases endostatin from human collagen XVIII. Angiogenesis 20, 125–137 (2017). https://doi.org/10.1007/s10456-016-9533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9533-6

Keywords

Navigation