Skip to main content
Log in

Novel Murine Models of Cerebral Cavernous Malformations

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT et al (1988) Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med 319(6):343–347. https://doi.org/10.1056/nejm198808113190605

    Article  CAS  PubMed  Google Scholar 

  2. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823

    Article  Google Scholar 

  3. Sahoo T, Johnson EW, Thomas JW, Kuehl PM, Jones TL, Dokken CG et al (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8(12):2325–2333

    Article  CAS  Google Scholar 

  4. Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M et al (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23(2):189–193. https://doi.org/10.1038/13815

    Article  CAS  PubMed  Google Scholar 

  5. Liquori CL, Berg MJ, Siegel AM, Huang E, Zawistowski JS, Stoffer T et al (2003) Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73(6):1459–1464. https://doi.org/10.1086/380314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Denier C, Goutagny S, Labauge P, Krivosic V, Arnoult M, Cousin A et al (2004) Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet 74(2):326–337. https://doi.org/10.1086/381718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M et al (2005) Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76(1):42–51. https://doi.org/10.1086/426952

    Article  CAS  PubMed  Google Scholar 

  8. Gault J, Shenkar R, Recksiek P, Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36(4):872–874. https://doi.org/10.1161/01.STR.0000157586.20479.fd

    Article  PubMed  Google Scholar 

  9. Gault J, Awad IA, Recksiek P, Shenkar R, Breeze R, Handler M et al (2009) Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery 65(1):138–144; discussion 44–45. https://doi.org/10.1227/01.neu.0000348049.81121.c1

  10. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18(5):919–930. https://doi.org/10.1093/hmg/ddn430

    Article  CAS  PubMed  Google Scholar 

  11. McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S et al (2014) Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23(16):4357–4370. https://doi.org/10.1093/hmg/ddu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP et al (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80(3):422–432. https://doi.org/10.3171/jns.1994.80.3.0422

    Article  CAS  PubMed  Google Scholar 

  13. Horne MA, Flemming KD, Su IC, Stapf C, Jeon JP, Li D et al (2016) Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data. Lancet Neurol 15(2):166–173. https://doi.org/10.1016/s1474-4422(15)00303-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Al-Shahi Salman R, Hall JM, Horne MA, Moultrie F, Josephson CB, Bhattacharya JJ et al (2012) Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol 11(3):217–224. https://doi.org/10.1016/s1474-4422(12)70004-2

    Article  PubMed  Google Scholar 

  15. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J et al (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15(2):177–184. https://doi.org/10.1038/nm.1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crose LE, Hilder TL, Sciaky N, Johnson GL (2009) Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 284(20):13301–13305. https://doi.org/10.1074/jbc.C900009200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stockton RA, Shenkar R, Awad IA, Ginsberg MH (2010) Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207(4):881–896. https://doi.org/10.1084/jem.20091258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S et al (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285(16):11760–11764. https://doi.org/10.1074/jbc.C109.097220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R et al (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532(7597):122–126. https://doi.org/10.1038/nature17178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E et al (2015) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8(1):6–24. https://doi.org/10.15252/emmm.201505433

    Article  CAS  PubMed Central  Google Scholar 

  21. Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N et al (2017) Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545(7654):305–310. https://doi.org/10.1038/nature22075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faurobert E, Rome C, Lisowska J, Manet-Dupe S, Boulday G, Malbouyres M et al (2013) CCM1-ICAP-1 complex controls beta1 integrin-dependent endothelial contractility and fibronectin remodeling. J Cell Biol 202(3):545–561. https://doi.org/10.1083/jcb.201303044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA (2002) KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum Mol Genet 11(4):389–396. https://doi.org/10.1093/hmg/11.4.389

    Article  CAS  PubMed  Google Scholar 

  24. Wustehube J, Bartol A, Liebler SS, Brutsch R, Zhu Y, Felbor U et al (2010) Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci USA 107(28):12640–12645. https://doi.org/10.1073/pnas.1000132107

    Article  PubMed  Google Scholar 

  25. Zhou HJ, Qin L, Zhang H, Tang W, Ji W, He Y et al (2016) Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med 22(9):1033–1042. https://doi.org/10.1038/nm.4169

    Article  CAS  Google Scholar 

  26. Lopez-Ramirez MA, Pham A, Girard R, Wyseure T, Hale P, Yamashita A et al (2019) Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood 133(3):193–204. https://doi.org/10.1182/blood-2018-06-856062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goitre L, Balzac F, Degani S, Degan P, Marchi S, Pinton P et al (2010) KRIT1 regulates the homeostasis of intracellular reactive oxygen species. PLoS ONE 5(7):e11786. https://doi.org/10.1371/journal.pone.0011786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S et al (2015) Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med 7(11):1403–1417. https://doi.org/10.15252/emmm.201505316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M et al (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498(7455):492–496. https://doi.org/10.1038/nature12207

    Article  CAS  PubMed  Google Scholar 

  30. McDonald DA, Shi C, Shenkar R, Stockton RA, Liu F, Ginsberg MH et al (2012) Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43(2):571–574. https://doi.org/10.1161/strokeaha.111.625467

    Article  CAS  PubMed  Google Scholar 

  31. Bravi L, Rudini N, Cuttano R, Giampietro C, Maddaluno L, Ferrarini L et al (2015) Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci USA 112(27):8421–8426. https://doi.org/10.1073/pnas.1501352112

    Article  CAS  PubMed  Google Scholar 

  32. Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J et al (2015) Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131(3):289–299. https://doi.org/10.1161/circulationaha.114.010403

    Article  CAS  PubMed  Google Scholar 

  33. Nishimura S, Mishra-Gorur K, Park J, Surovtseva YV, Sebti SM, Levchenko A et al (2017) Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci USA 114(21):5503–5508. https://doi.org/10.1073/pnas.1702942114

    Article  CAS  PubMed  Google Scholar 

  34. Otten C, Knox J, Boulday G, Eymery M, Haniszewski M, Neuenschwander M et al (2018) Systematic pharmacological screens uncover novel pathways involved in cerebral cavernous malformations. EMBO Mol Med. https://doi.org/10.15252/emmm.201809155

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Ramirez MA, Fonseca G, Zeineddine HA, Girard R, Moore T, Pham A et al (2017) Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med. https://doi.org/10.1084/jem.20171178

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zabramski JM, Kalani MYS, Filippidis AS, Spetzler RF (2016) Propranolol treatment of cavernous malformations with symptomatic hemorrhage. World Neurosurg 88:631–639. https://doi.org/10.1016/j.wneu.2015.11.003

    Article  PubMed  Google Scholar 

  37. Reinhard M, Schuchardt F, Meckel S, Heinz J, Felbor U, Sure U et al (2016) Propranolol stops progressive multiple cerebral cavernoma in an adult patient. J Neurol Sci 367:15–17. https://doi.org/10.1016/j.jns.2016.04.053

    Article  PubMed  Google Scholar 

  38. Choi JP, Wang R, Yang X, Wang X, Wang L, Ting KK et al (2018) Ponatinib (AP24534) inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. Sci Adv. 4(11):eaau0731. https://doi.org/10.1126/sciadv.aau0731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKerracher L, Shenkar R, Abbinanti M, Cao Y, Peiper A, Liao JK et al (2019) A brain-targeted orally available ROCK2 inhibitor benefits mild and aggressive cavernous angioma disease. Transl Stroke Res. https://doi.org/10.1007/s12975-019-00725-8

    Article  PubMed  Google Scholar 

  40. DiStefano PV, Glading AJ (2020) VEGF signalling enhances lesion burden in KRIT1 deficient mice. J Cell Mol Med 24(1):632–639. https://doi.org/10.1111/jcmm.14773

    Article  CAS  PubMed  Google Scholar 

  41. Lant B, Yu B, Goudreault M, Holmyard D, Knight JD, Xu P et al (2015) CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 6:6449. https://doi.org/10.1038/ncomms7449

    Article  CAS  PubMed  Google Scholar 

  42. Mably JD, Chuang LP, Serluca FC, Mohideen MA, Chen JN, Fishman MC (2006) santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development 133(16):3139–3146. https://doi.org/10.1242/dev.02469

    Article  CAS  PubMed  Google Scholar 

  43. Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S (2008) ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet 17(16):2424–2432. https://doi.org/10.1093/hmg/ddn142

    Article  CAS  PubMed  Google Scholar 

  44. Voss K, Stahl S, Hogan BM, Reinders J, Schleider E, Schulte-Merker S et al (2009) Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Hum Mutat 30(6):1003–1011. https://doi.org/10.1002/humu.20996

    Article  CAS  PubMed  Google Scholar 

  45. Kleaveland B, Zheng X, Liu JJ, Blum Y, Tung JJ, Zou Z et al (2009) Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med 15(2):169–176. https://doi.org/10.1038/nm.1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoruk B, Gillers BS, Chi NC, Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362(2):121–131. https://doi.org/10.1016/j.ydbio.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  47. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY (2004) Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 131(6):1437–1448. https://doi.org/10.1242/dev.01036

    Article  CAS  PubMed  Google Scholar 

  48. Plummer NW, Squire TL, Srinivasan S, Huang E, Zawistowski JS, Matsunami H et al (2006) Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous malformations. Mamm Genome 17(2):119–128. https://doi.org/10.1007/s00335-005-0098-8

    Article  CAS  PubMed  Google Scholar 

  49. Boulday G, Blecon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M et al (2009) Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Models Mech 2(3–4):168–177. https://doi.org/10.1242/dmm.001263

    Article  CAS  Google Scholar 

  50. He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H et al (2010) Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3(116):ra26. https://doi.org/10.1126/scisignal.2000722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH et al (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20(2):211–222. https://doi.org/10.1093/hmg/ddq433

    Article  CAS  PubMed  Google Scholar 

  52. Chan AC, Drakos SG, Ruiz OE, Smith AC, Gibson CC, Ling J et al (2011) Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 121(5):1871–1881. https://doi.org/10.1172/jci44393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN, Marchuk DA (2004) Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol 165(5):1509–1518. https://doi.org/10.1016/s0002-9440(10)63409-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y et al (2017) RhoA Kinase inhibition with fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke 48(1):187–194. https://doi.org/10.1161/strokeaha.116.015013

    Article  CAS  PubMed  Google Scholar 

  55. Shenkar R, Peiper A, Pardo H, Moore T, Lightle R, Girard R et al (2019) Rho kinase inhibition blunts lesion development and hemorrhage in murine models of aggressive Pdcd10/Ccm3 disease. Stroke 50(3):738–744. https://doi.org/10.1161/strokeaha.118.024058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Louvi A, Chen L, Two AM, Zhang H, Min W, Gunel M (2011) Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci USA 108(9):3737–3742. https://doi.org/10.1073/pnas.1012617108

    Article  PubMed  Google Scholar 

  57. Zheng X, Xu C, Smith AO, Stratman AN, Zou Z, Kleaveland B et al (2012) Dynamic regulation of the cerebral cavernous malformation pathway controls vascular stability and growth. Dev Cell 23(2):342–355. https://doi.org/10.1016/j.devcel.2012.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mleynek TM, Chan AC, Redd M, Gibson CC, Davis CT, Shi DS et al (2014) Lack of CCM1 induces hypersprouting and impairs response to flow. Hum Mol Genet 23(23):6223–6234. https://doi.org/10.1093/hmg/ddu342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zeineddine HA, Girard R, Saadat L, Shen L, Lightle R, Moore T et al (2019) Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest 99(3):319–330. https://doi.org/10.1038/s41374-018-0030-y

    Article  CAS  PubMed  Google Scholar 

  60. Claxton S, Kostourou V, Jadeja S, Chambon P, Hodivala-Dilke K, Fruttiger M (2008) Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46(2):74–80. https://doi.org/10.1002/dvg.20367

    Article  CAS  PubMed  Google Scholar 

  61. Ridder DA, Lang MF, Salinin S, Roderer JP, Struss M, Maser-Gluth C et al (2011) TAK1 in brain endothelial cells mediates fever and lethargy. J Exp Med 208(13):2615–2623. https://doi.org/10.1084/jem.20110398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boulday G, Rudini N, Maddaluno L, Blécon A, Arnould M, Gaudric A et al (2011) Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice. J Exp Med 208(9):1835–1847. https://doi.org/10.1084/jem.20110571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Robertson PL, Du Bois M, Bowman PD, Goldstein GW (1985) Angiogenesis in developing rat brain: an in vivo and in vitro study. Brain Res 355(2):219–223. https://doi.org/10.1016/0165-3806(85)90044-6

    Article  CAS  PubMed  Google Scholar 

  64. Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58(4):313–320. https://doi.org/10.1097/00005072-199904000-00001

    Article  CAS  PubMed  Google Scholar 

  65. Acker T, Beck H, Plate KH (2001) Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mech Dev 108(1):45–57. https://doi.org/10.1016/S0925-4773(01)00471-3

    Article  CAS  PubMed  Google Scholar 

  66. Shi C, Shenkar R, Du H, Duckworth E, Raja H, Batjer HH et al (2009) Immune response in human cerebral cavernous malformations. Stroke 40(5):1659–1665. https://doi.org/10.1161/strokeaha.108.538769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi C, Shenkar R, Zeineddine HA, Girard R, Fam MD, Austin C et al (2016) B-cell depletion reduces the maturation of cerebral cavernous malformations in murine models. J Neuroimmune Pharmacol 11(2):369–377. https://doi.org/10.1007/s11481-016-9670-0

    Article  PubMed  PubMed Central  Google Scholar 

  68. Girard R, Zeineddine HA, Fam MD, Mayampurath A, Cao Y, Shi C et al (2017) Plasma biomarkers of inflammation reflect seizures and hemorrhagic activity of cerebral cavernous malformations. Transl Stroke Res 9(1):34–43. https://doi.org/10.1007/s12975-017-0561-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M et al (2006) Genotype–phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60(5):550–556. https://doi.org/10.1002/ana.20947

    Article  PubMed  Google Scholar 

  70. Riant F, Bergametti F, Fournier HD, Chapon F, Michalak-Provost S, Cecillon M et al (2013) CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 4(4):165–172. https://doi.org/10.1159/000350042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG et al (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17(3):188–196. https://doi.org/10.1038/gim.2014.97

    Article  CAS  PubMed  Google Scholar 

  72. Cardoso C, Arnould M, De Luca C, Otten C, Abdelilah-Seyfried S, Heredia A et al (2020) Novel chronic mouse model of cerebral cavernous malformations. Stroke. https://doi.org/10.1161/strokeaha.119.027207

    Article  PubMed  Google Scholar 

  73. Koskimaki J, Zhang D, Carrion-Penagos J, Girard R, Piedad K, Polster SP et al (2020) Symptomatic brain hemorrhages from cavernous angioma after botulinum toxin injections, a role of TLR/MEKK3 mechanism? Case report and review of the literature. World Neurosurg 136:7–11. https://doi.org/10.1016/j.wneu.2019.12.172

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Wang Min, Marcus Fruttiger, and Markus Schwaninger for generously providing transgenic mice used in this work. We would also like to thank Drs. Mark Kahn and Mark Ginsberg for helpful discussions.

Funding

This work was supported by the National Institutes of Health (P01 NS092521 to D.A. Marchuk and I.A. Awad, F30 HL140871 to M.R. Detter, and T32 GM007171), the Fondation Leducq (17 CVD 03 to D.A. Marchuk), and the American Heart Association (18PRE34060061 to M.R. Detter).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Marchuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detter, M.R., Shenkar, R., Benavides, C.R. et al. Novel Murine Models of Cerebral Cavernous Malformations. Angiogenesis 23, 651–666 (2020). https://doi.org/10.1007/s10456-020-09736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09736-8

Keywords

Navigation