Skip to main content
Log in

Variability of herbaceous productivity along Nothofagus pumilio forest-open grassland boundaries in northern Chilean Patagonia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

In order to develop a general model of aboveground net primary production (ANPP) of herbaceous communities in grazing systems that combine forested and open grasslands in temperate areas, biomass production and a set of biotic and abiotic variables were measured at four adjacent forest and grassland sites in Chile’s northern Patagonia for two consecutive growing seasons. At each site, one transect of 80 m long (40 m in open grassland and 40 m in forest) × 10 m wide was established. ANPP was significantly higher in open grasslands but no gradual change in biomass production was observed from inside the forest towards the open grassland. In open grasslands ANPP was spatially uniform but highly variable between years of contrasting weather conditions, whereas in forests it was more spatially heterogeneous and less variable over time. ANPP was highly correlated with cattle consumption. Structural equation models developed for the whole system confirm that ANPP was driven mainly by photosynthetically active radiation (PAR) and available nitrogen. However, we found important differences between forests and the adjacent open grasslands. In forests ANPP was enhanced by positive feedbacks between the amount of transmitted PAR through the canopy and soil nutrient input via cattle dung deposition. In open grasslands nitrogen availability appeared to be the main limiting factor but also influenced by weather conditions (dryer or wetter years). The coexistence of forests and grasslands patches, with different susceptibility of ANPP to meteorological and soil nutrient availability, highlights the importance of implementing an integrated silvopastoral system with lenga (Nothofagus pumilio [Poepp. & Endl.] Krasser) in northern Patagonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH, Raffaelli DG (eds) Advances in ecological research, vol 30. Elsevier Academic Press Inc, San Diego, pp 1–67

    Chapter  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582. doi:10.1111/j.1469-8137.1993.tb03847.x

    Article  CAS  Google Scholar 

  • Auerswald K, Mayer F, Schnyder H (2010) Coupling of spatial and temporal pattern of cattle excreta patches on a low intensity pasture. Nutr Cycl Agroecosyst 88:275–288. doi:10.1007/s10705-009-9321-4

    Article  Google Scholar 

  • Badía D, Martí C, Sánchez J, Fillat F, Aguirre J, Gómez D (2008) Influence of livestock soil eutrophication on floral composition in the Pyrenees Mountains. J Mt Sci 5:63–72. doi:10.1007/s11629-008-0063-6

    Article  Google Scholar 

  • Bahamonde HA, Peri PL, Álvarez R, Barneix A (2012) Producción y calidad de gramíneas en un gradiente de calidades de sitio y coberturas en bosques de Nothofagus antarctica (G. Forster) Oerst. en Patagonia. Ecología austral 22:62–73

    Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For Ecol Manage 254:1–15. doi:10.1016/j.foreco.2007.09.038

    Article  Google Scholar 

  • Bardgett RD, Keiller S, Cook R, Gilburn AS (1998) Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biol Biochem 30:531–539. doi:10.1016/S0038-0717(97)00146-6

    Article  CAS  Google Scholar 

  • Barnes P, Wilson BR, Trotter MG, Lamb DW, Reid N, Koen T, Bayerlein L (2011) The patterns of grazed pasture associated with scattered trees across an Australian temperate landscape: an investigation of pasture quantity and quality. Rangel J 33:121–130. doi:10.1071/RJ09017

    Article  Google Scholar 

  • Belsky AJ, Blumenthal DM (1997) Effects of livestock grazing on stand dynamics and soils in upland forests of the interior West. Conserv Biol 11:315–327. doi:10.1046/j.1523-1739.1997.95405.x

    Article  Google Scholar 

  • Benavides R, Douglas G, Osoro K (2009) Silvopastoralism in New Zealand: review of effects of evergreen and deciduous trees on pasture dynamics. Agrofor Syst 76:327–350. doi:10.1007/s10457-008-9186-6

    Article  Google Scholar 

  • Bizama G, Torrejón F, Aguayo M, Muñoz MD, Echeverría C, Urrutia R (2011) Pérdida y fragmentación del bosque nativo en la cuenca del río Aysén (Patagonia-Chile) durante el siglo XX. Revista de Geografía Norte Grande, pp 125–138. doi:10.4067/S0718-34022011000200008

  • Breshears DD (2006) The grassland–forest continuum: trends in ecosystem properties for woody plant mosaics? Front Ecol Environ 4:96–104. doi:10.1890/1540-9295(2006)004[0096:TGCTIE]2.0.CO;2

  • Caldentey J, Ibarra M, Hernández J (2001) Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For Ecol Manage 148:145–157. doi:10.1016/s0378-1127(00)00532-6

    Article  Google Scholar 

  • Casado MA, de Miguel JM, Sterling A, Peco B, Galiano EF, Pineda FD (1985) Production and spatial structure of Mediterranean pastures in different stages of ecological succession. Vegetatio 64:75–86

    Article  Google Scholar 

  • De Miguel JM (1999) Naturaleza y configuración del paisaje agrosilvopastoral en la conservación de la diversidad biológica en España. Revista Chilena de Historia Natural 72:547–557

    Google Scholar 

  • De Miguel JM, Rodríguez MA, Gómez-Sal A (1997) Determination of animal behavior-environment relationships by correspondence analysis. J Range Manage 50:85–93

    Article  Google Scholar 

  • De Miguel JM, Acosta-Gallo B, Gómez-Sal A (2013) Understanding Mediterranean pasture dynamics: general tree cover versus specific effects of individual trees. Rangel Ecol Manage 66:216–223. doi:10.2111/rem-d-12-00016.1

    Article  Google Scholar 

  • Decker KLM, Boerner REJ (2006) Mass loss and nutrient release from decomposing evergreen and deciduous Nothofagus litters from the Chilean Andes. Austral Ecol 31:1005–1015. doi:10.1111/j.1442-9993.2006.01670.x

    Article  Google Scholar 

  • Dohn J, Dembélé F, Karembé M, Moustakas A, Amévor KA, Hanan NP (2013) Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. J Ecol 101:202–209. doi:10.1111/1365-2745.12010

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter—its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi:10.1007/BF02858763

    Article  Google Scholar 

  • Fernández ME, Gyenge JE, Schlichter TM (2007) Balance of competitive and facilitative effects of exotic trees on a native Patagonian grass. Plant Ecol 188:67–76. doi:10.1007/s11258-006-9148-x

    Article  Google Scholar 

  • Finch JF, West SG, MacKinnon DP (1997) Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models. Struct Equ Model A Multidiscip J 4:87–107. doi:10.1080/10705519709540063

    Article  Google Scholar 

  • Gómez-Sal A, Rodríguez MA, de Miguel JM (1992) Matter transfer and land use by cattle in a dehesa ecosystem of Central Spain. Vegetatio 99–100:345–354

    Article  Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

  • Henriksen TM, Breland TA (1999) Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol Biochem 31:1121–1134. doi:10.1016/s0038-0717(99)00030-9

    Article  CAS  Google Scholar 

  • Hepp C, Thiermann H, Ramírez C (1988) Praderas en la zona austral XI Región (Aysén). In: Ruiz Núñez I (ed) Praderas para Chile. Instituto de Investigaciones Agropecuarias, Santiago, Chile

    Google Scholar 

  • Jackson LE, Strauss RB, Firestone MK, Bartolome JW (1990) Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agric Ecosyst Environ 32:89–105. doi:10.1016/0167-8809(90)90126-X

    Article  Google Scholar 

  • Jose S, Gillespie AR, George SJ, Kumar BM (1996) Vegetation responses along edge-to-interior gradients in a high altitude tropical forest in peninsular India. For Ecol Manage 87:51–62

    Article  Google Scholar 

  • Le Brocque AF, Goodhew KA, Zammit CA (2009) Overstorey tree density and understorey regrowth effects on plant composition, stand structure and floristic richness in grazed temperate woodlands in eastern Australia. Agric Ecosyst Environ 129:17–27. doi:10.1016/j.agee.2008.06.011

    Article  Google Scholar 

  • Ludwig F, de Kroon H, Berendse F, Prins H (2004) The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol 170:93–105. doi:10.1023/B:VEGE.0000019023.29636.92

    Article  Google Scholar 

  • Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures—implications for conservation. Biol Conserv 132:311–321. doi:10.1016/j.biocon.2006.04.023

    Article  Google Scholar 

  • Marañón T, Pugnaire FI, Callaway RM (2009) Mediterranean-climate oak savannas: the interplay between abiotic environment and species interactions. Web Ecol 43:30–43. doi:10.5194/we-9-30-2009

    Article  Google Scholar 

  • Martínez Pastur G, Lencinas MV, Cellini JM, Peri PL, Soler Esteban R (2009) Timber management with variable retention in Nothofagus pumilio forests of Southern Patagonia. For Ecol Manage 258:436–443. doi:10.1016/j.foreco.2009.01.048

    Article  Google Scholar 

  • Matlack GR (1994) Vegetation dynamics of the forest edge—trends in space and successional time. J Ecol 82:113–123. http://www.jstor.org/stable/2261391

  • McGregor BA, Brown AJ (2010) Soil nutrient accumulation in alpaca latrine sites. Small Rumin Res 94:17–24. doi:10.1016/j.smallrumres.2010.06.004

    Article  Google Scholar 

  • McNaughton SJ (1988) Mineral nutrition and spatial concentrations of African ungulates. Nature 334:343–345. doi:10.1038/334343a0

    Article  CAS  PubMed  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144. doi:10.1038/341142a0

    Article  CAS  PubMed  Google Scholar 

  • Mordelet P, Menaut J-C (1995) Influence of trees on above-ground production dynamics of grasses in a humid savanna. J Veg Sci 6:223–228. doi:10.2307/3236217

    Article  Google Scholar 

  • Mosquera-Losada MR, McAdam J, Rigueiro-Rodríguez A (2005) Silvopastoralism and sustainable land management. CABI Publishing, UK

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests - implications for conservation. Trends Ecol Evol 10:58–62

  • Ortega H, Brüning A (2004) Aisén. Panorama histórico y cultural de la XI Región. Ediciones LOM, Chile. http://www.aisenpanorama.cl/libro.htm. 18 April 2012

  • Ovalle C, del Pozo A, Casado MA, Acosta B, de Miguel JM (2006) Consequences of landscape heterogeneity on grassland diversity and productivity in the espinal-agroforestry system of central Chile. Landsc Ecol 21:585–594. doi:10.1007/s10980-005-3498-y

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci 107:5786–5791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Promis A, Caldentey J, Ibarra M (2010) Microclima en el interior de un bosque de Nothofagus pumilio y el efecto de una corta de regeneración. Bosque 31(2):129–139

    Article  Google Scholar 

  • Quinteros C, López Bernal P, Gobbi M, Bava J (2012) Distance to flood meadows as a predictor of use of Nothofagus pumilio forest by livestock and resulting impact, in Patagonia, Argentina. Agrofor Syst 84:261–272. doi:10.1007/s10457-011-9461-9

    Article  Google Scholar 

  • R Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  • Rivest D, Paquette A, Moreno G, Messier C (2013) A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agric Ecosyst Environ 165:74–79. doi:10.1016/j.agee.2012.12.010

    Article  Google Scholar 

  • Ryrie SC, Prentice IC (2011) Herbivores enable plant survival under nutrient limited conditions in a model grazing system. Ecol Model 222:381–397. doi:10.1016/j.ecolmodel.2010.09.024

    Article  CAS  Google Scholar 

  • Sadzawka A, Carrasco MA, Grez R, Mora MDLL, Flores H, Neaman A (2006) Métodos de análisis recomendados para los suelos de Chile. Santiago, Chile

  • Sala OE, Jackson RB, Mooney HA, Howarth RW (2000) Methods in ecosystem science. Springer, New York

  • Sánchez-Jardón L, Acosta B, del Pozo A, Casado MA, Ovalle C, Elizalde HF, Hepp C, de Miguel JM (2010) Grassland productivity and diversity on a tree cover gradient in Nothofagus pumilio in NW Patagonia. Agric Ecosyst Environ 137:213–218. doi:10.1016/j.agee.2010.02.006

    Article  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry. An analysis of global change (2nd end, on 1997). Academic Press, Waltham

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • St. Luce MS, Whalen JK, Ziadi N, Zebarth BJ (2011) Nitrogen dynamics and indices to predict soil nitrogen supply in humid temperate soils. Adv Agron 112:55–102. doi:10.1016/B978-0-12-385538-1.00002-0

  • Treydte AC, Riginos C, Jeltsch F (2010) Enhanced use of beneath-canopy vegetation by grazing ungulates in African savannahs. J Arid Environ 74:1597–1603. doi:10.1016/j.jaridenv.2010.07.003

    Article  Google Scholar 

  • Veblen TT, Kitzberger B, Rebertus A (1996) Perturbaciones y dinámica de regeneración en bosques andinos del Sur de Chile y Argentina. In: Armesto JJ, Villagrán C, Arroyo MK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago de Chile, pp 169–197

    Google Scholar 

  • Villagrán J, Núñez A, Hidalgo R (1997) Políticas públicas y ocupación del territorio en la XI Región de Aysén. Revista de Geografía Norte Grande 24:11–18

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it ocurr? Biogeochemistry 13:87–115. doi:10.1007/BF00002772

    Article  Google Scholar 

  • Wiens JA, Crawford CS, Gosz JR (1985) Boundary dynamics—a conceptual-framework for studying landscape ecosystems. Oikos 45:421–427

    Article  Google Scholar 

  • Williams PH, Haynes RJ (1995) Effect of sheep, deer and cattle dung on herbage production and soil nutrient content. Grass Forage Sci 50:263–271. doi:10.1111/j.1365-2494.1995.tb02322.x

    Article  Google Scholar 

  • Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994. doi:10.1046/j.1365-2745.1999.00414.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was partly funded by the Fundación Biodiversidad, Complutense University of Madrid (UCM), and the Spanish Ministry of Science and Innovation through project CGL2009-08718. L. Sánchez-Jardón obtained a graduate student fellowship from UCM. We thank C. Hepp and H.F. Elizalde for their collaboration in this research, to all the staff at the Tamel Aike INIA research station for their assistance during field work and to Ana García-Cervigón Morales for valuable help with structural equation modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sánchez-Jardón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Jardón, L., Acosta-Gallo, B., del Pozo, A. et al. Variability of herbaceous productivity along Nothofagus pumilio forest-open grassland boundaries in northern Chilean Patagonia. Agroforest Syst 88, 397–411 (2014). https://doi.org/10.1007/s10457-014-9696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-014-9696-3

Keywords

Navigation