Skip to main content
Log in

Poles of pair correlation functions: When they are real?

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The most common standard estimator of the pair correlation function (PCF) of a point process has a pole at zero, which is in most cases a statistical artifact. However, sometimes it makes sense to assume that a pole really exists. We propose two independent approaches for the proof of existence of a PCF’s pole and for the determination of its order. In the first, we use a summary characteristic F that transforms the PCF’s pole order to the location of F’s pole, while the other one uses a natural estimation method based on Ripley’s K-function. These methods are applied to simulated samples of two classical point process models and two cluster point process models with special geometries. Finally, we use the approach in the statistical analysis of a classical point pattern of pine trees and a highly clustered pattern of nonmetallic inclusions in steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baddeley, A., Rubak, E., Turner, R. (2015). Spatial point patterns: Methodology and applications with R. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Brechet, Y. J. M. (1994). Clusters, plasticity and damage: A missing link? Materials Science and Engineering: A, 175(1–2), 63–69.

    Article  Google Scholar 

  • Buryachenko, V. (2007). Micromechanics of heterogeneous materials. New York: Springer.

    Book  Google Scholar 

  • Chiu, S. N., Liu, K. I. (2013). Stationarity tests for spatial point processes using discrepancies. Biometrics, 69(2), 497–507.

    Article  MathSciNet  Google Scholar 

  • Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J. (2013). Stochastic geometry and its applications 3rd ed. Chichester: Wiley.

    Book  Google Scholar 

  • Cressie, N. A. C. (1991). Statistics for spatial data. New York: Wiley.

    MATH  Google Scholar 

  • Daley, D. J., Vere-Jones, D. (2008). An introduction to the theory of point processes: Volume II: General theory and structure. New York: Springer.

    MATH  Google Scholar 

  • Davis, M., Peebles, P. J. E. (1983). A survey of galaxy redshifts. V-The two-point position and velocity correlations. The Astrophysical Journal, 267, 465–482.

    Article  Google Scholar 

  • Gelfand, A. E., Diggle, P., Fuentes, M., Guttorp, P. (2010). Handbook of spatial statistics. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Ghorbani, M. (2013). Cauchy cluster process. Metrika, 76(5), 697–706.

    Article  MathSciNet  Google Scholar 

  • Guan, Y. (2007). A least-squares cross-validation bandwidth selection approach in pair correlation function estimations. Statistics & Probability Letters, 77(18), 1722–1729.

    Article  MathSciNet  Google Scholar 

  • Guan, Y. (2008). A kpss test for stationarity for spatial point processes. Biometrics, 64(3), 800–806.

    Article  MathSciNet  Google Scholar 

  • Illian, J., Penttinen, A., Stoyan, H., Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns, Vol. 70. Chichester: Wiley.

    MATH  Google Scholar 

  • Martinez, V. J., Saar, E. (2002). Statistics of the galaxy distribution. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Mecke, K. R., Stoyan, D. (2005). Morphological characterization of point patterns. Biometrical Journal, 47(4), 473–488.

    Article  MathSciNet  Google Scholar 

  • Peebles, P. J. E. (1974). The nature of the distribution of galaxies. Astronomy & Astrophysics, 32, 197–202.

    Google Scholar 

  • Rathbun, S. L. (1990). Estimation and statistical inference for space-time point processes. Ph.D. thesis, Iowa State University, Ames.

  • Seleznev, M., Wong, K. Y., Stoyan, D., Weidner, A., Biermann, H. (2018). Cluster detection of non-metallic inclusions in 42CrMo4 steel. Steel Research International, 89(11), 1800216.

    Article  Google Scholar 

  • Stoyan, D. (1983). Inequalities and bounds for variances of point processes and fibre processes. Series Statistics, 14(3), 409–419.

    Article  MathSciNet  Google Scholar 

  • Stoyan, D. (1994). Caution with fractal point patterns!. Statistics, 25(3), 267–270.

    Article  MathSciNet  Google Scholar 

  • Stoyan, D., Stoyan, H. (1996). Estimating pair correlation functions of planar cluster processes. Biometrical Journal, 38(3), 259–271.

    Article  Google Scholar 

  • Tanaka, U., Ogata, Y., Stoyan, D. (2008). Parameter estimation and model selection for Neyman–Scott point processes. Biometrical Journal, 50(1), 43–57.

    Article  MathSciNet  Google Scholar 

  • Totsuji, H., Kihara, T. (1969). The correlation function for the distribution of galaxies. Publications of the Astronomical Society of Japan, 21, 221–229.

    Google Scholar 

Download references

Acknowledgements

Financial support of this work by the German Research Foundation (DFG) within the Collaborative Research Center 920, subproject C04, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Yiu Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K.Y., Stoyan, D. Poles of pair correlation functions: When they are real?. Ann Inst Stat Math 73, 425–440 (2021). https://doi.org/10.1007/s10463-020-00754-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-020-00754-3

Keywords

Navigation