Skip to main content
Log in

Fusion Product Structure of Demazure Modules

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let 𝔤 be a finite–dimensional complex simple Lie algebra. Given a non–negative integer , we define \(\mathcal {P}^{+}_{\ell }\) to be the set of dominant weights λ of 𝔤 such that Λ0+λ is a dominant weight for the corresponding untwisted affine Kac–Moody algebra \(\widehat {{\mathfrak {g}}}\). For the current algebra 𝔤[t] associated to 𝔤, we show that the fusion product of an irreducible 𝔤–module V(λ) such that \(\lambda \in \mathcal {P}^{+}_{\ell }\) and a finite number of special family of 𝔤–stable Demazure modules of level (considered in Fourier and Littelmann, Nagoya Math. J. 182, 171–198 (2006), Adv. Math. 211(2), 566–593 2007) again turns out to be a Demazure module. This fact is closely related with several important conjectures. We use this result to construct the 𝔤[t]–module structure of the irreducible \({\widehat {\mathfrak {g}}}\)–module V( Λ0 + λ) as a semi–infinite fusion product of finite dimensional 𝔤[t]–modules as conjectured in Fourier and Littelmann, Adv. Math. 211(2), 566–593 (2007). As a second application we give further evidence to the conjecture on the generalization of Schur positivity (see Chari, Fourier and Sagaki 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardonne, E., Kedem, R.: Fusion products of Kirillov–Reshetikhin modules and fermionic multiplicity formulas. J. Algebra 308, 270–294 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bennett, M., Chari, V., Manning, N.: BGG reciprocity for current algebras. Adv. Math. 231(1), 276–305 (2012)

  3. Bourbaki, N.: Lie groups and Lie algebras, Chapters 4–6, Elements of Mathematics (Berlin)

  4. Chari, V.: On the fermionic formula and the Kirillov–Reshetikhin conjecture. Internat. Math. Res. Notices 12, 629–654 (2001)

    Article  MathSciNet  Google Scholar 

  5. Chari, V., Ion, B., Kus, D.: Weyl modules for the hyperspecial current algebra. arXiv:1403.5285 (2014)

  6. Chari, V., Fourier, G., Khandai, T.: A categorical approach to Weyl modules. Transform Groups 15(3), 517–549 (2010)

  7. Chari, V., Fourier, G., Sagaki, D.: Posets, Tensor Products and Schur Positivity to appear in Algebra and Number Theory. arXiv:1210.6184 (2013)

  8. Chari, V., Moura, A.: The restricted Kirillov–Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys. 266(2), 431–454 (2006)

  9. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent Theory 5, 191–223 (2001)

  10. Chari, V., Venkatesh, R.: Demazure modules, Fusion products and Q–systems. arXiv:1305.2523 (2013)

  11. Di Francesco, P., Kedem, R.: Proof of the combinatorial Kirillov–Reshetikhin conjecture. Int. Math. Res. Not. IMRN 2008(7 Art. ID rnn006), 57 (2008)

    MathSciNet  Google Scholar 

  12. Feigin B.L., Feigin, E.: q–characters of the tensor products in 𝔰l 2–case. Mosc. Math. J. 2(3), 567–588 (2002). arXiv:mathQA/0201111

  13. Feigin, B., Feigin, E.: Integrable \(\widehat {{\mathfrak {sl}}_{2}}\) –representations as infinite tensor products. arXiv:mathQA/0205281 (2002)

  14. Feigin B., Loktev, S.: On Generalized Kostka Polynomials and the Quantum Verlinde Rule, Differential topology, infinite–dimensional Lie algebras, and applications. Amer. Math. Soc. Transl. Ser. 194 (2), 61–79 (1999). arXiv:mathQA/9812093

    MathSciNet  Google Scholar 

  15. Fourier, G., Littelmann, P.: Tensor product structure of affine Demazuremodules and limit constructions. Nagoya. Math. J. 182, 171–198 (2006)

  16. Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR–modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566–593 (2007)

  17. Fourier, G.: New homogeneous ideals for current algebras: filtrations, fusion products and Pieri rules. arXiv:1403.4758 (2014)

  18. Joseph, A.: On the Demazure character formula. Annales Scientifique de l’.E.N.S., 389–419 (1985)

  19. Kedem, R.: Fusion products, cohomology of GL(N) flag manifolds and Kostka polynomials, IMRN no. 25, pp. 1273–1298. arXiv:mathRT/0312478(2004)

  20. Kumar, S.: Kac–Moody Groups, their flag varieties and representation theory. Progress in Mathematics Birkhauser Verlag, Boston (2002)

    Book  MATH  Google Scholar 

  21. Mathieu, O.: Construction du groupe de Kac–Moody et applications. C.R. Acad. Sci. Paris, t 306, 227–330 (1988)

    MATH  MathSciNet  Google Scholar 

  22. Naoi, K.: Weyl modules, Demazure modules and finite crystals for non–simply laced type. Adv. Math. 229(2), 875–934 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Naoi, K.: Fusion products of Kirillov–Reshetikhin modules and the X = M conjecture. Adv. Math. 231(3–4), 1546–1571 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkatesh.

Additional information

Presented by Peter Littelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, R. Fusion Product Structure of Demazure Modules. Algebr Represent Theor 18, 307–321 (2015). https://doi.org/10.1007/s10468-014-9495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-014-9495-6

Keywords

Navigation