Skip to main content
Log in

Quantum Twist Maps and Dual Canonical Bases

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this paper, we show that quantum twist maps, introduced by Lenagan-Yakimov, induce bijections between dual canonical bases of quantum nilpotent subalgebras. As a corollary, we show the unitriangular property between dual canonical bases and Poincaré-Birkhoff-Witt type bases under the “reverse” lexicographic order. We also show that quantum twist maps induce bijections between certain unipotent quantum minors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Beck, J., Chari, V., Pressley, A.: An algebraic characterization of the affine canonical basis. Duke Math. J. 99(3), 455–487 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122(1), 49–149 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein, A., Rupel, D.: Quantum cluster characters of Hall algebras. Selecta Math. (N.S.) 21(4), 1121–1176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72(1), 128–166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Amer. Math. Soc. 12(2), 335–380 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fujita, N., Oya, H.: A comparison of Newton-Okounkov polytopes of Schubert varieties. J. Lond. Math. Soc. (2) 96(1), 201–227 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geiss, C., Leclerc, B., Schröer, J.: Generic bases for cluster algebras and the Chamber ansatz. J. Amer. Math. Soc. 25(1), 21–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geiss, C., Leclerc, B., Schröer, J.: Cluster structures on quantum coordinate rings. Sel. Math. New Ser. 19, 337–397 (2013)

  9. Goodearl, K., Yakimov, M.: Quantum cluster algebra structures on quantum nilpotent algebras. Mem. Amer. Math. Soc. 247, 1169 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Goodearl, K., Yakimov, M.: The Berenstein-Zelevinsky quantum cluster algebra conjecture. arXiv:1602.00498 (2016)

  11. Jantzen, J.C.: Lectures on quantum groups. Grad. Stud. Math. 6, viii+266 (1996)

  12. Kashiwara, M.: On crystal bases of the Q-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71(3), 839–858 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kashiwara, M.: On crystal bases. Representations of groups (Banff, AB, 1994), CMS Conf. Proc, vol. 16, pp 155–197. Amer. Math. Soc., Providence (1995)

    Google Scholar 

  15. Kimura, Y.: Quantum unipotent subgroup and dual canonical basis. Kyoto J. Math. 52(2), 277–331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kimura, Y.: Remarks on quantum unipotent subgroups and the dual canonical basis. Pacific J. Math. 286(1), 125–151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lenagan, T., Yakimov, M.: Prime factors of quantum Schubert cell algebras and clusters for quantum Richardson varieties. J. reine angew. Math, Ahead of Print

  18. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lusztig, G.: Braid group action and canonical bases. Adv. Math. 122(2), 237–261 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lusztig, G.: Introduction to quantum groups. Mod. Birkhäuser Class. New York Reprint of the 1994 edition (2010)

  21. Peter, J.: Mcnamara: Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type. J. Reine Angew. Math. 707, 103–124 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Nakajima, H.: Quiver varieties and canonical bases of quantum affine algebras available at http://www4.ncsu.edu/~jing/conf/CBMS/nakajima_part1.pdf (2010)

  23. Saito, Y.: PBW basis of quantized universal enveloping algebras. Publ. Res. Inst. Math. Sci. 30(2), 209–232 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Williams, H.: Cluster ensembles and Kac-Moody groups. Adv. Math. 247, 1–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express our sincere gratitude to Yoshihisa Saito, the supervisor of the second author, for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Oya.

Additional information

Presented by Kenneth Goodearl.

The work of the first author was supported by JSPS Grant-in-Aid for Scientific Research (S) 24224001. The work of the second author was supported by Grant-in-Aid for JSPS Fellows (No. 15J09231) and the Program for Leading Graduate Schools, MEXT, Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y., Oya, H. Quantum Twist Maps and Dual Canonical Bases. Algebr Represent Theor 21, 589–604 (2018). https://doi.org/10.1007/s10468-017-9729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9729-5

Keywords

Mathematics Subject Classification (2010)

Navigation