Skip to main content
Log in

An enhanced folded cascode Op-Amp using positive feedback and bulk amplification in 0.35 μm CMOS process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper a new operational amplifier is presented which is based on the conventional folded cascode Op-Amp structure. A new method of positive feedback is used to increase dc-gain. This method does not limit the range of the output voltage swing. True performance of the Op-Amp in higher output voltage swings is another advantage of the proposed Op-Amp in comparison with the conventional structures. Bulk amplification and positive feedback are used to improve the Op-Amp specifications. Proposed structure has been simulated by HSPICE software using level 49 parameters (BSIM3v3) in a typical 0.35 μm CMOS technology. The HSPICE simulation confirms the theoretical estimated improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gulati, K., & Lee, H.-S. (1998). A high-swing CMOS telescopic operational amplifier. IEEE J Solid-State Circuits, 33(12), 2010–2019.

    Article  Google Scholar 

  2. Nakamura, K., & Richard Carley, L. (1992). An enhanced fully differential folded-cascode Op-Amp. IEEE Journal of Solid-State Circuits, 27(4), 563–568.

    Article  Google Scholar 

  3. Musah, T., Gregoire, B. R., Naviasky, E., & Moon, U. (2007). Parallel correlated double sampling technique for pipelined analogue-to-digital converters. Electron Letter, 43(23), 1260–1261.

    Article  Google Scholar 

  4. Gregoire, B. R., & Moon, U. (2008). An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain. IEEE Journal of Soild-State Circuits, 43(12), 2620–2630.

    Article  Google Scholar 

  5. Laber, C. A., & Gray, P. R. (1988). A positive-feedback transconductance amplifier with applications to high-frequency, high-Q CMOS switched-capacitor filters. IEEE Journal of Solid-State Circuits, 23(6), 1370–1378.

    Article  Google Scholar 

  6. Ramirez-Angulo, J., Calvo, B., Carvajal, R., Lopez-Martin, A. (2010) Low-voltage gm-enhanced CMOS differential pairs using positive feedback (pp. 773–776). Paris, France: IEEE ISCAS

    Google Scholar 

  7. Razavi, B. (2001). Design of analog CMOS integrated circuits. McGraw-Hill.

  8. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits. New York: Wiley.

    Google Scholar 

  9. Mottaghi-Kashtiban, M., Hadidi, Kh., & Khoei, A. (2006). Modified CMOS Op-Amp with improved gain and bandwidth. IEICE Transactions on Electron, E89–C, 775–780.

    Article  Google Scholar 

  10. Zhang, M. M., & Hurst, P. J., (2006) Effect of nonlinearity in the CMFB circuit that uses the differential-difference amplifier. IEEE International Symposium on Circuits and Systems, 1390–1393.

  11. Guzinski, A., Bialko, M., & Matheau, J. C. (1987). Body driven differential amplifier for application in continuous-time active C-filter (pp. 315–319). Paris, France: Proc.ECCD.

    Google Scholar 

  12. Blalock, B. J., et al., (1998). Designing 1-V op amps using standard digital cmos technology. Circuits and Systems II: Analog and Digital Signal Processing, 45, 769–780.

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dadashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadashi, A., Sadrafshari, S., Hadidi, K. et al. An enhanced folded cascode Op-Amp using positive feedback and bulk amplification in 0.35 μm CMOS process. Analog Integr Circ Sig Process 67, 213–222 (2011). https://doi.org/10.1007/s10470-010-9561-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9561-x

Keywords

Navigation